Cargando…

Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators

Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spin...

Descripción completa

Detalles Bibliográficos
Autor principal: Kumamoto, Eiichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789548/
https://www.ncbi.nlm.nih.gov/pubmed/31527474
http://dx.doi.org/10.3390/ph12030136
_version_ 1783458644136820736
author Kumamoto, Eiichi
author_facet Kumamoto, Eiichi
author_sort Kumamoto, Eiichi
collection PubMed
description Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
format Online
Article
Text
id pubmed-6789548
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67895482019-10-16 Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators Kumamoto, Eiichi Pharmaceuticals (Basel) Review Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons. MDPI 2019-09-16 /pmc/articles/PMC6789548/ /pubmed/31527474 http://dx.doi.org/10.3390/ph12030136 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Kumamoto, Eiichi
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
title Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
title_full Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
title_fullStr Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
title_full_unstemmed Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
title_short Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II—Comparison with Those of Other Endogenous Pain Modulators
title_sort cellular mechanisms for antinociception produced by oxytocin and orexins in the rat spinal lamina ii—comparison with those of other endogenous pain modulators
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789548/
https://www.ncbi.nlm.nih.gov/pubmed/31527474
http://dx.doi.org/10.3390/ph12030136
work_keys_str_mv AT kumamotoeiichi cellularmechanismsforantinociceptionproducedbyoxytocinandorexinsintheratspinallaminaiicomparisonwiththoseofotherendogenouspainmodulators