Cargando…
Pharmacogenomic Testing: Clinical Evidence and Implementation Challenges
Pharmacogenomics can enhance patient care by enabling treatments tailored to genetic make-up and lowering risk of serious adverse events. As of June 2019, there are 132 pharmacogenomic dosing guidelines for 99 drugs and pharmacogenomic information is included in 309 medication labels. Recently, the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789586/ https://www.ncbi.nlm.nih.gov/pubmed/31394823 http://dx.doi.org/10.3390/jpm9030040 |
Sumario: | Pharmacogenomics can enhance patient care by enabling treatments tailored to genetic make-up and lowering risk of serious adverse events. As of June 2019, there are 132 pharmacogenomic dosing guidelines for 99 drugs and pharmacogenomic information is included in 309 medication labels. Recently, the technology for identifying individual-specific genetic variants (genotyping) has become more accessible. Next generation sequencing (NGS) is a cost-effective option for genotyping patients at many pharmacogenomic loci simultaneously, and guidelines for implementation of these data are available from organizations such as the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG). NGS and related technologies are increasing knowledge in the research sphere, yet rates of genomic literacy remain low, resulting in a widening gap in knowledge translation to the patient. Multidisciplinary teams—including physicians, nurses, genetic counsellors, and pharmacists—will need to combine their expertise to deliver optimal pharmacogenomically-informed care. |
---|