Cargando…

Effect of 6-Shogaol on the Glucose Uptake and Survival of HT1080 Fibrosarcoma Cells

Ginger is a plant that is native to southern China. In the last decade and research on the components of ginger has significantly increased; of these components, 6-shogaol exhibits the greatest potential antitumor capacity. However, the molecular mechanism through which 6-shogaol exerts its effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Romero-Arias, Angie C., Sequeda-Castañeda, Luis G., Aristizábal-Pachón, Andres F., Morales, Ludis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789756/
https://www.ncbi.nlm.nih.gov/pubmed/31505728
http://dx.doi.org/10.3390/ph12030131
Descripción
Sumario:Ginger is a plant that is native to southern China. In the last decade and research on the components of ginger has significantly increased; of these components, 6-shogaol exhibits the greatest potential antitumor capacity. However, the molecular mechanism through which 6-shogaol exerts its effects has not yet been elucidated. In this study, the effect of 6-shogaol on tumor cells that were derived from human fibrosarcoma (HT1080) was evaluated. Cell viability was determined by a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay testing different concentrations of 6-shogaol (2.5–150 μM). Subsequently, the effect of 6-shogaol on reactive oxygen species (ROS) production, glucose uptake, and protein expression of the signaling pathway phosphatase and tensin homolog/ protein kinase B /mammalian target of rapamycin (PTEN/Akt/mTOR) was measured. 6-Shogaol reduced the viability of the tumor cells and caused an increase in ROS production, which was attenuated with the addition of N-acetylcysteine, and the recovery of cell viability was observed. The increase in ROS production in response to 6-shogaol was associated with cell death. Similarly, glucose uptake decreased with incremental concentrations of 6-shogaol, and an increase in the expression of mTOR-p and Akt-p proteins was observed; PTEN was active in all the treatments with 6-shogaol. Thus, the results suggest that cells activate uncontrolled signaling pathways, such as phosphoinositide 3-kinase (PI3K)/Akt/mTOR, among other alternative mechanisms of metabolic modulation and of survival in order to counteract the pro-oxidant effect of 6-shogaol and the decrease in glucose uptake. Interestingly, a differential response was observed when non-cancerous cells were treated with 6-shogaol.