Cargando…
Investigation of Anthocyanins Stability from Pomegranate Juice (Punica Granatum L. Cv Ermioni) under a Simulated Digestion Process
Background: Pomegranate gained a widespread popularity as a functional food due to the high content of bioactive components of the whole fruit, as well as its juice and extracts. There is a large amount of research that assigns them very important functions for the human organism. Methods: The antho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789892/ https://www.ncbi.nlm.nih.gov/pubmed/31434230 http://dx.doi.org/10.3390/medicines6030090 |
Sumario: | Background: Pomegranate gained a widespread popularity as a functional food due to the high content of bioactive components of the whole fruit, as well as its juice and extracts. There is a large amount of research that assigns them very important functions for the human organism. Methods: The anthocyanins (ACNs) of pomegranate juice (PJ) from the Ermioni variety are quantitatively identified and their stability under a simulated digestion process (SDP) is investigated. ACNs, as well as phenolic compounds, were isolated through solid phase extraction and determined using high-performance liquid chromatography in every stage of the SDP. Total phenolics, total monomeric ACNs, polymeric color and antioxidant activity were also determined in pomegranate juice and during the digestion process. Results: The predominant anthocyanin was Cy-3-glucoside followed by the corresponding 3,5-diglucoside, which accounted for 40.8% and 27.4% of the total ACN content, respectively. About 65% of the total monomeric ACN content remained intact by the end of the simulated digestion process. Conclusions: The PJ of the Ermioni variety seems to retain a large amount of the bioactive compounds after the SDP. The antioxidant activity and total phenolic content (TPC) remain almost stable during the SDP, suggesting that the products formed during ACN degradation maintain the antioxidant activity of the parent molecule. |
---|