Cargando…

Tivantinib Hampers the Proliferation of Glioblastoma Cells via PI3K/Akt/Mammalian Target of Rapamycin (mTOR) Signaling

BACKGROUND: Glioblastoma, the most common and malignant glial tumor, often has poor prognosis. Tivantinib has shown its potential in treating c-Met-high carcinoma. No studies have explored whether tivantinib inhibits the development of glioblastoma. MATERIAL/METHODS: The correlation between c-Met ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yukun, Li, Zhizhang, Zhang, Lijuan, Liu, Guiyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790099/
https://www.ncbi.nlm.nih.gov/pubmed/31575848
http://dx.doi.org/10.12659/MSM.919319
Descripción
Sumario:BACKGROUND: Glioblastoma, the most common and malignant glial tumor, often has poor prognosis. Tivantinib has shown its potential in treating c-Met-high carcinoma. No studies have explored whether tivantinib inhibits the development of glioblastoma. MATERIAL/METHODS: The correlation between c-Met expression and clinicopathological characteristics of glioblastoma was investigated. U251 and T98MG glioblastoma cells treated with tivantinib, PI3K inhibitor (LY294002), PI3K activator (740 Y-P), and/or mammalian target of rapamycin (mTOR) inhibitor were subjected to MTT assay or colony formation assay to evaluate cell proliferation. The expression of mTOR signaling and caspase-3 in tivantinib-treated glioblastoma cells was differentially measured by western blotting. RESULTS: In a group of Chinese patients, expression of c-Met was elevated with the size of glioblastoma, but not with the other clinicopathological characteristics, including gender, age, grade, IDH status, 1p/19q status, and Ki67 status. High dose of tivantinib (1 μmol/L) obviously repressed the proliferation and colony formation of U251 and T98MG glioblastoma cells, but low dose (0.1 μmol/L) of tivantinib failed to retard cell proliferation. Tivantinib blocked PI3K/Akt/mTOR signaling but did not change the expression of cleaved caspase-3. PI3K activator 740 Y-P (20 μmol/L) significantly rescued tivantinib-induced decrease of cell proliferation. Tivantinib (1 μmol/L) in combination with PI3K inhibitor LY294002 (0.5 μmol/L) and mTOR inhibitor rapamycin (0.1 nmol/L) largely inhibited the proliferation of glioblastoma cells. CONCLUSIONS: c-MET inhibitor tivantinib blocks PIKE/Akt/mTOR signaling and hampers the proliferation of glioblastoma cells, which endows the drug a therapeutic effect.