Cargando…
A probabilistic classifier ensemble weighting scheme based on cross-validated accuracy estimates
Our hypothesis is that building ensembles of small sets of strong classifiers constructed with different learning algorithms is, on average, the best approach to classification for real-world problems. We propose a simple mechanism for building small heterogeneous ensembles based on exponentially we...
Autores principales: | Large, James, Lines, Jason, Bagnall, Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790343/ https://www.ncbi.nlm.nih.gov/pubmed/31632184 http://dx.doi.org/10.1007/s10618-019-00638-y |
Ejemplares similares
-
Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure
por: Zeng, Xiaodong, et al.
Publicado: (2014) -
The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
por: Bagnall, Anthony, et al.
Publicado: (2016) -
Deconstructing Cross-Entropy for Probabilistic Binary Classifiers
por: Ramos, Daniel, et al.
Publicado: (2018) -
Achieving descriptive accuracy in explanations via argumentation: The case of probabilistic classifiers
por: Albini, Emanuele, et al.
Publicado: (2023) -
Phishing website prediction using base and ensemble classifier techniques with cross-validation
por: Awasthi, Anjaneya, et al.
Publicado: (2022)