Cargando…
Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs
We present an in‐depth qualitative and quantitative analysis of a reaction between 4‐iodobenzenediazonium tetrafluoroborate and single‐walled carbon nanotubes (SWCNTs) via thermogravimetric analysis coupled with mass spectrometry (TG‐MS) or a gas chromatography and mass spectrometry (TG‐GC‐MS) as we...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790569/ https://www.ncbi.nlm.nih.gov/pubmed/31298442 http://dx.doi.org/10.1002/chem.201902330 |
_version_ | 1783458799685730304 |
---|---|
author | Schirowski, Milan Hauke, Frank Hirsch, Andreas |
author_facet | Schirowski, Milan Hauke, Frank Hirsch, Andreas |
author_sort | Schirowski, Milan |
collection | PubMed |
description | We present an in‐depth qualitative and quantitative analysis of a reaction between 4‐iodobenzenediazonium tetrafluoroborate and single‐walled carbon nanotubes (SWCNTs) via thermogravimetric analysis coupled with mass spectrometry (TG‐MS) or a gas chromatography and mass spectrometry (TG‐GC‐MS) as well as Raman spectroscopy. We propose a method for precise determination of the degree of functionalization and quantification of physisorbed aromates, detaching around their boiling point, alongside covalently bonded ones (cleavage over 200 °C). While the presence of some side products like phenol‐ or biphenyl species could be excluded, residual surfactant and minor amounts of benzene could be identified. A concentration‐dependent experiment shows that the degree of functionalization increases with the logarithm of the concentration of applied diazonium salt, which can be exploited to precisely adjust the amount of aryl addends on the nanotube sidewall, up to 1 moiety per 100 carbon atoms. |
format | Online Article Text |
id | pubmed-6790569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67905692019-10-18 Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs Schirowski, Milan Hauke, Frank Hirsch, Andreas Chemistry Full Papers We present an in‐depth qualitative and quantitative analysis of a reaction between 4‐iodobenzenediazonium tetrafluoroborate and single‐walled carbon nanotubes (SWCNTs) via thermogravimetric analysis coupled with mass spectrometry (TG‐MS) or a gas chromatography and mass spectrometry (TG‐GC‐MS) as well as Raman spectroscopy. We propose a method for precise determination of the degree of functionalization and quantification of physisorbed aromates, detaching around their boiling point, alongside covalently bonded ones (cleavage over 200 °C). While the presence of some side products like phenol‐ or biphenyl species could be excluded, residual surfactant and minor amounts of benzene could be identified. A concentration‐dependent experiment shows that the degree of functionalization increases with the logarithm of the concentration of applied diazonium salt, which can be exploited to precisely adjust the amount of aryl addends on the nanotube sidewall, up to 1 moiety per 100 carbon atoms. John Wiley and Sons Inc. 2019-09-05 2019-10-01 /pmc/articles/PMC6790569/ /pubmed/31298442 http://dx.doi.org/10.1002/chem.201902330 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Schirowski, Milan Hauke, Frank Hirsch, Andreas Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs |
title | Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs
|
title_full | Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs
|
title_fullStr | Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs
|
title_full_unstemmed | Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs
|
title_short | Controlling the Degree of Functionalization: In‐Depth Quantification and Side‐Product Analysis of Diazonium Chemistry on SWCNTs
|
title_sort | controlling the degree of functionalization: in‐depth quantification and side‐product analysis of diazonium chemistry on swcnts |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790569/ https://www.ncbi.nlm.nih.gov/pubmed/31298442 http://dx.doi.org/10.1002/chem.201902330 |
work_keys_str_mv | AT schirowskimilan controllingthedegreeoffunctionalizationindepthquantificationandsideproductanalysisofdiazoniumchemistryonswcnts AT haukefrank controllingthedegreeoffunctionalizationindepthquantificationandsideproductanalysisofdiazoniumchemistryonswcnts AT hirschandreas controllingthedegreeoffunctionalizationindepthquantificationandsideproductanalysisofdiazoniumchemistryonswcnts |