Cargando…

Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst

Single‐atom catalysts (SACs) bridge homo‐ and heterogeneous catalysis because the active site is a metal atom coordinated to surface ligands. The local binding environment of the atom should thus strongly influence how reactants adsorb. Now, atomically resolved scanning‐probe microscopy, X‐ray photo...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakub, Zdenek, Hulva, Jan, Meier, Matthias, Bliem, Roland, Kraushofer, Florian, Setvin, Martin, Schmid, Michael, Diebold, Ulrike, Franchini, Cesare, Parkinson, Gareth S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790613/
https://www.ncbi.nlm.nih.gov/pubmed/31339617
http://dx.doi.org/10.1002/anie.201907536
_version_ 1783458809430147072
author Jakub, Zdenek
Hulva, Jan
Meier, Matthias
Bliem, Roland
Kraushofer, Florian
Setvin, Martin
Schmid, Michael
Diebold, Ulrike
Franchini, Cesare
Parkinson, Gareth S.
author_facet Jakub, Zdenek
Hulva, Jan
Meier, Matthias
Bliem, Roland
Kraushofer, Florian
Setvin, Martin
Schmid, Michael
Diebold, Ulrike
Franchini, Cesare
Parkinson, Gareth S.
author_sort Jakub, Zdenek
collection PubMed
description Single‐atom catalysts (SACs) bridge homo‐ and heterogeneous catalysis because the active site is a metal atom coordinated to surface ligands. The local binding environment of the atom should thus strongly influence how reactants adsorb. Now, atomically resolved scanning‐probe microscopy, X‐ray photoelectron spectroscopy, temperature‐programmed desorption, and DFT are used to study how CO binds at different Ir(1) sites on a precisely defined Fe(3)O(4)(001) support. The two‐ and five‐fold‐coordinated Ir adatoms bind CO more strongly than metallic Ir, and adopt structures consistent with square‐planar Ir(I) and octahedral Ir(III) complexes, respectively. Ir incorporates into the subsurface already at 450 K, becoming inactive for adsorption. Above 900 K, the Ir adatoms agglomerate to form nanoparticles encapsulated by iron oxide. These results demonstrate the link between SAC systems and coordination complexes, and that incorporation into the support is an important deactivation mechanism.
format Online
Article
Text
id pubmed-6790613
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67906132019-10-18 Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst Jakub, Zdenek Hulva, Jan Meier, Matthias Bliem, Roland Kraushofer, Florian Setvin, Martin Schmid, Michael Diebold, Ulrike Franchini, Cesare Parkinson, Gareth S. Angew Chem Int Ed Engl Research Articles Single‐atom catalysts (SACs) bridge homo‐ and heterogeneous catalysis because the active site is a metal atom coordinated to surface ligands. The local binding environment of the atom should thus strongly influence how reactants adsorb. Now, atomically resolved scanning‐probe microscopy, X‐ray photoelectron spectroscopy, temperature‐programmed desorption, and DFT are used to study how CO binds at different Ir(1) sites on a precisely defined Fe(3)O(4)(001) support. The two‐ and five‐fold‐coordinated Ir adatoms bind CO more strongly than metallic Ir, and adopt structures consistent with square‐planar Ir(I) and octahedral Ir(III) complexes, respectively. Ir incorporates into the subsurface already at 450 K, becoming inactive for adsorption. Above 900 K, the Ir adatoms agglomerate to form nanoparticles encapsulated by iron oxide. These results demonstrate the link between SAC systems and coordination complexes, and that incorporation into the support is an important deactivation mechanism. John Wiley and Sons Inc. 2019-08-19 2019-09-23 /pmc/articles/PMC6790613/ /pubmed/31339617 http://dx.doi.org/10.1002/anie.201907536 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Jakub, Zdenek
Hulva, Jan
Meier, Matthias
Bliem, Roland
Kraushofer, Florian
Setvin, Martin
Schmid, Michael
Diebold, Ulrike
Franchini, Cesare
Parkinson, Gareth S.
Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst
title Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst
title_full Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst
title_fullStr Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst
title_full_unstemmed Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst
title_short Local Structure and Coordination Define Adsorption in a Model Ir(1)/Fe(3)O(4) Single‐Atom Catalyst
title_sort local structure and coordination define adsorption in a model ir(1)/fe(3)o(4) single‐atom catalyst
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790613/
https://www.ncbi.nlm.nih.gov/pubmed/31339617
http://dx.doi.org/10.1002/anie.201907536
work_keys_str_mv AT jakubzdenek localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT hulvajan localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT meiermatthias localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT bliemroland localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT kraushoferflorian localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT setvinmartin localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT schmidmichael localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT dieboldulrike localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT franchinicesare localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst
AT parkinsongareths localstructureandcoordinationdefineadsorptioninamodelir1fe3o4singleatomcatalyst