Cargando…
Data-Driven Machine-Learning Quantifies Differences in the Voiding Initiation Network in Neurogenic Voiding Dysfunction in Women With Multiple Sclerosis
PURPOSE: To quantify the relative importance of brain regions responsible for reduced functional connectivity (FC) in their Voiding Initiation Network in female multiple sclerosis (MS) patients with neurogenic lower urinary tract dysfunction (NLUTD) and voiding dysfunction (VD). A data-driven machin...
Autores principales: | Karmonik, Christof, Boone, Timothy, Khavari, Rose |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Continence Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790826/ https://www.ncbi.nlm.nih.gov/pubmed/31607098 http://dx.doi.org/10.5213/inj.1938058.029 |
Ejemplares similares
-
Classification of multiple sclerosis women with voiding dysfunction using machine learning: Is functional connectivity or structural connectivity a better predictor?
por: Tran, Khue, et al.
Publicado: (2023) -
Predictors for outcomes of noninvasive, individualized transcranial magnetic neuromodulation in multiple sclerosis women with neurogenic voiding dysfunction
por: Jang, Yongchang, et al.
Publicado: (2022) -
High spatial correlation in brain connectivity between micturition and resting states within bladder-related networks using 7 T MRI in multiple sclerosis women with voiding dysfunction
por: Shi, Zhaoyue, et al.
Publicado: (2021) -
Therapeutic effects of non-invasive, individualized, transcranial neuromodulation treatment for voiding dysfunction in multiple sclerosis patients: study protocol for a pilot clinical trial
por: Tran, Khue, et al.
Publicado: (2021) -
Is the Brainstem Activation Different Between Healthy Young Male and Female Volunteers at Initiation of Voiding? A High Definition 7-Tesla Magnetic Resonance Imaging Study
por: Schott, Bradley, et al.
Publicado: (2023)