Cargando…
Puberty is a critical window for the impact of diet on mammary gland development in the rabbit
BACKGROUND: Nutritional changes can affect future lactation efficiency. In a rabbit model, an obesogenic diet initiated before puberty and pursued throughout pregnancy enhances mammary differentiation, but when started during the neonatal period can cause abnormal mammary development in early pregna...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790954/ https://www.ncbi.nlm.nih.gov/pubmed/31348557 http://dx.doi.org/10.1002/dvdy.91 |
Sumario: | BACKGROUND: Nutritional changes can affect future lactation efficiency. In a rabbit model, an obesogenic diet initiated before puberty and pursued throughout pregnancy enhances mammary differentiation, but when started during the neonatal period can cause abnormal mammary development in early pregnancy. The aim of this study was to investigate the impact of an unbalanced diet administered during the pubertal period only. RESULTS: Consuming an obesogenic diet at puberty did not affect either metabolic parameters or certain maternal reproductive parameters at the onset of adulthood. In contrast, at Day 8 of pregnancy, epithelial tissue showed a lower proliferation rate in obesogenic‐diet fed rabbits than in control‐diet fed rabbits. Wap and Cx26 genes, mammary epithelial cell differentiation markers, were upregulated although Wap protein level remained unchanged. However, the expression of genes involved in lipid metabolism and in alveolar formation was not modified. CONCLUSION: Taken together, our results demonstrate that the consumption for 5 weeks of an obesogenic diet during the pubertal period initiates mammary structure modifications and affects mammary epithelial cell proliferation and differentiation. Our findings highlight the potentially important role played by unbalanced nutrition during critical early‐life windows in terms of regulating mammary epithelial cell differentiation and subsequent function in adulthood. |
---|