Cargando…
Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards
Hox genes orchestrate development by patterning the embryonic axis. Vertebrate Hox genes are arranged in four compact clusters, and the spacing between genes is assumed to be crucial for their function. The genomes of squamate reptiles are unusually rich and variable in transposable elements (TEs),...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791295/ https://www.ncbi.nlm.nih.gov/pubmed/31636940 http://dx.doi.org/10.1002/evl3.131 |
_version_ | 1783458962770755584 |
---|---|
author | Feiner, Nathalie |
author_facet | Feiner, Nathalie |
author_sort | Feiner, Nathalie |
collection | PubMed |
description | Hox genes orchestrate development by patterning the embryonic axis. Vertebrate Hox genes are arranged in four compact clusters, and the spacing between genes is assumed to be crucial for their function. The genomes of squamate reptiles are unusually rich and variable in transposable elements (TEs), and it has been suggested that TE invasion is responsible for the Hox cluster expansion seen in snakes and lizards. Using de novo TE prediction on 17 genomes of lizards and snakes, I show that TE content of Hox clusters are generally 50% lower than genome‐wide TE levels. However, two distantly related lizards of the species‐rich genus Anolis have Hox clusters with a TE content that approaches genomic levels. The age distribution of TEs in Anolis lizards revealed that peaks of TE activity broadly coincide with speciation events. In accordance with theoretical models of Hox cluster regulation, I find that Anolis species with many TEs in their Hox clusters show aberrant Hox gene expression patterns, suggesting a functional link between TE accumulation and embryonic development. These results are consistent with the hypothesis that TEs play a role in developmental processes as well as in evolutionary diversifications. |
format | Online Article Text |
id | pubmed-6791295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67912952019-10-21 Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards Feiner, Nathalie Evol Lett Letters Hox genes orchestrate development by patterning the embryonic axis. Vertebrate Hox genes are arranged in four compact clusters, and the spacing between genes is assumed to be crucial for their function. The genomes of squamate reptiles are unusually rich and variable in transposable elements (TEs), and it has been suggested that TE invasion is responsible for the Hox cluster expansion seen in snakes and lizards. Using de novo TE prediction on 17 genomes of lizards and snakes, I show that TE content of Hox clusters are generally 50% lower than genome‐wide TE levels. However, two distantly related lizards of the species‐rich genus Anolis have Hox clusters with a TE content that approaches genomic levels. The age distribution of TEs in Anolis lizards revealed that peaks of TE activity broadly coincide with speciation events. In accordance with theoretical models of Hox cluster regulation, I find that Anolis species with many TEs in their Hox clusters show aberrant Hox gene expression patterns, suggesting a functional link between TE accumulation and embryonic development. These results are consistent with the hypothesis that TEs play a role in developmental processes as well as in evolutionary diversifications. John Wiley and Sons Inc. 2019-08-06 /pmc/articles/PMC6791295/ /pubmed/31636940 http://dx.doi.org/10.1002/evl3.131 Text en © 2019 The Author(s). Evolution Letters published by Wiley Periodicals, Inc. on behalf of Society for the Study of Evolution (SSE) and European Society for Evolutionary Biology (ESEB). This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Letters Feiner, Nathalie Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards |
title | Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards |
title_full | Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards |
title_fullStr | Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards |
title_full_unstemmed | Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards |
title_short | Evolutionary lability in Hox cluster structure and gene expression in Anolis lizards |
title_sort | evolutionary lability in hox cluster structure and gene expression in anolis lizards |
topic | Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791295/ https://www.ncbi.nlm.nih.gov/pubmed/31636940 http://dx.doi.org/10.1002/evl3.131 |
work_keys_str_mv | AT feinernathalie evolutionarylabilityinhoxclusterstructureandgeneexpressioninanolislizards |