Cargando…
Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes
Control of fatty acid storage and release in adipose tissue is fundamental in energy homeostasis and the development of obesity and type 2 diabetes. We here take the whole signalling network into account to identify how insulin and β-adrenergic stimulation in concert controls lipolysis in mature sub...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792037/ https://www.ncbi.nlm.nih.gov/pubmed/31519735 http://dx.doi.org/10.1042/BCJ20190594 |
_version_ | 1783459070415470592 |
---|---|
author | Jönsson, Cecilia Castor Batista, Ana P. Kjølhede, Preben Strålfors, Peter |
author_facet | Jönsson, Cecilia Castor Batista, Ana P. Kjølhede, Preben Strålfors, Peter |
author_sort | Jönsson, Cecilia |
collection | PubMed |
description | Control of fatty acid storage and release in adipose tissue is fundamental in energy homeostasis and the development of obesity and type 2 diabetes. We here take the whole signalling network into account to identify how insulin and β-adrenergic stimulation in concert controls lipolysis in mature subcutaneous adipocytes obtained from non-diabetic and, in parallel, type 2 diabetic women. We report that, and show how, the anti-lipolytic effect of insulin can be fully explained by protein kinase B (PKB/Akt)-dependent activation of the phosphodiesterase PDE3B. Through the same PKB-dependent pathway β-adrenergic receptor signalling, via cAMP and PI3Kα, is anti-lipolytic and inhibits its own stimulation of lipolysis by 50%. Through this pathway both insulin and β-adrenergic signalling control phosphorylation of FOXO1. The dose–response of lipolysis is bell-shaped, such that insulin is anti-lipolytic at low concentrations, but at higher concentrations of insulin lipolysis was increasingly restored due to inhibition of PDE3B. The control of lipolysis was not altered in adipocytes from diabetic individuals. However, the release of fatty acids was increased by 50% in diabetes due to reduced reesterification of lipolytically liberated fatty acids. In conclusion, our results reveal mechanisms of control by insulin and β-adrenergic stimulation — in human adipocytes — that define a network of checks and balances ensuring robust control to secure uninterrupted supply of fatty acids without reaching concentrations that put cellular integrity at risk. Moreover, our results define how selective insulin resistance leave lipolytic control by insulin unaltered in diabetes, while the fatty acid release is substantially increased. |
format | Online Article Text |
id | pubmed-6792037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67920372019-10-24 Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes Jönsson, Cecilia Castor Batista, Ana P. Kjølhede, Preben Strålfors, Peter Biochem J Research Articles Control of fatty acid storage and release in adipose tissue is fundamental in energy homeostasis and the development of obesity and type 2 diabetes. We here take the whole signalling network into account to identify how insulin and β-adrenergic stimulation in concert controls lipolysis in mature subcutaneous adipocytes obtained from non-diabetic and, in parallel, type 2 diabetic women. We report that, and show how, the anti-lipolytic effect of insulin can be fully explained by protein kinase B (PKB/Akt)-dependent activation of the phosphodiesterase PDE3B. Through the same PKB-dependent pathway β-adrenergic receptor signalling, via cAMP and PI3Kα, is anti-lipolytic and inhibits its own stimulation of lipolysis by 50%. Through this pathway both insulin and β-adrenergic signalling control phosphorylation of FOXO1. The dose–response of lipolysis is bell-shaped, such that insulin is anti-lipolytic at low concentrations, but at higher concentrations of insulin lipolysis was increasingly restored due to inhibition of PDE3B. The control of lipolysis was not altered in adipocytes from diabetic individuals. However, the release of fatty acids was increased by 50% in diabetes due to reduced reesterification of lipolytically liberated fatty acids. In conclusion, our results reveal mechanisms of control by insulin and β-adrenergic stimulation — in human adipocytes — that define a network of checks and balances ensuring robust control to secure uninterrupted supply of fatty acids without reaching concentrations that put cellular integrity at risk. Moreover, our results define how selective insulin resistance leave lipolytic control by insulin unaltered in diabetes, while the fatty acid release is substantially increased. Portland Press Ltd. 2019-10-15 2019-10-11 /pmc/articles/PMC6792037/ /pubmed/31519735 http://dx.doi.org/10.1042/BCJ20190594 Text en © 2019 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Research Articles Jönsson, Cecilia Castor Batista, Ana P. Kjølhede, Preben Strålfors, Peter Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes |
title | Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes |
title_full | Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes |
title_fullStr | Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes |
title_full_unstemmed | Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes |
title_short | Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes |
title_sort | insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792037/ https://www.ncbi.nlm.nih.gov/pubmed/31519735 http://dx.doi.org/10.1042/BCJ20190594 |
work_keys_str_mv | AT jonssoncecilia insulinandbadrenergicreceptorsmediatelipolyticandantilipolyticsignallingthatisnotalteredbytype2diabetesinhumanadipocytes AT castorbatistaanap insulinandbadrenergicreceptorsmediatelipolyticandantilipolyticsignallingthatisnotalteredbytype2diabetesinhumanadipocytes AT kjølhedepreben insulinandbadrenergicreceptorsmediatelipolyticandantilipolyticsignallingthatisnotalteredbytype2diabetesinhumanadipocytes AT stralforspeter insulinandbadrenergicreceptorsmediatelipolyticandantilipolyticsignallingthatisnotalteredbytype2diabetesinhumanadipocytes |