Cargando…

A barley stripe mosaic virus‐based guide RNA delivery system for targeted mutagenesis in wheat and maize

Plant RNA virus‐based guide RNA (gRNA) delivery has substantial advantages compared to that of the conventional constitutive promoter‐driven expression due to the rapid and robust amplification of gRNAs during virus replication and movement. To date, virus‐induced genome editing tools have not been...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Jiacheng, Li, Shaoya, Li, Zhaolei, Li, Huiyuan, Song, Weibin, Zhao, Haiming, Lai, Jinsheng, Xia, Lanqin, Li, Dawei, Zhang, Yongliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792137/
https://www.ncbi.nlm.nih.gov/pubmed/31273916
http://dx.doi.org/10.1111/mpp.12849
Descripción
Sumario:Plant RNA virus‐based guide RNA (gRNA) delivery has substantial advantages compared to that of the conventional constitutive promoter‐driven expression due to the rapid and robust amplification of gRNAs during virus replication and movement. To date, virus‐induced genome editing tools have not been developed for wheat and maize. In this study, we engineered a barley stripe mosaic virus (BSMV)‐based gRNA delivery system for clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9‐mediated targeted mutagenesis in wheat and maize. BSMV‐based delivery of single gRNAs for targeted mutagenesis was first validated in Nicotiana benthamiana. To extend this work, we transformed wheat and maize with the Cas9 nuclease gene and selected the wheat TaGASR7 and maize ZmTMS5 genes as targets to assess the feasibility and efficiency of BSMV‐mediated mutagenesis. Positive targeted mutagenesis of the TaGASR7 and ZmTMS5 genes was achieved for wheat and maize with efficiencies of up to 78% and 48%. Our results provide a useful tool for fast and efficient delivery of gRNAs into economically important crops.