Cargando…
Multi-cohort modeling strategies for scalable globally accessible prostate cancer risk tools
BACKGROUND: Online clinical risk prediction tools built on data from multiple cohorts are increasingly being utilized for contemporary doctor-patient decision-making and validation. This report outlines a comprehensive data science strategy for building such tools with application to the Prostate Bi...
Autores principales: | Tolksdorf, Johanna, Kattan, Michael W., Boorjian, Stephen A., Freedland, Stephen J., Saba, Karim, Poyet, Cedric, Guerrios, Lourdes, De Hoedt, Amanda, Liss, Michael A., Leach, Robin J., Hernandez, Javier, Vertosick, Emily, Vickers, Andrew J., Ankerst, Donna P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792191/ https://www.ncbi.nlm.nih.gov/pubmed/31615451 http://dx.doi.org/10.1186/s12874-019-0839-0 |
Ejemplares similares
-
Accommodating heterogeneous missing data patterns for prostate cancer risk prediction
por: Neumair, Matthias, et al.
Publicado: (2022) -
A case control study of sarcosine as an early prostate cancer detection biomarker
por: Ankerst, Donna P., et al.
Publicado: (2015) -
Prediction of future risk of any and higher-grade prostate cancer based on the PLCO and SELECT trials
por: Gelfond, Jonathan A., et al.
Publicado: (2022) -
The effect of 3-month finasteride challenge on biomarkers for predicting cancer outcome on biopsy: Results of a randomized trial
por: Hernandez, Javier, et al.
Publicado: (2018) -
An empirical study of race times in recreational endurance runners
por: Vickers, Andrew J., et al.
Publicado: (2016)