Cargando…
CoMM: A Collaborative Mixed Model That Integrates GWAS and eQTL Data Sets to Investigate the Genetic Architecture of Complex Traits
Genome-wide association study (GWAS) analyses have identified thousands of associations between genetic variants and complex traits. However, it is still a challenge to uncover the mechanisms underlying the association. With the growing availability of transcriptome data sets, it has become possible...
Autores principales: | Yeung, Kar-Fu, Yang, Yi, Yang, Can, Liu, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792274/ https://www.ncbi.nlm.nih.gov/pubmed/31662603 http://dx.doi.org/10.1177/1177932219881435 |
Ejemplares similares
-
CoMM-S(4): A Collaborative Mixed Model Using Summary-Level eQTL and GWAS Datasets in Transcriptome-Wide Association Studies
por: Yang, Yi, et al.
Publicado: (2021) -
Discovery of Candidate Genes for Muscle Traits Based on GWAS Supported by eQTL-analysis
por: Ponsuksili, Siriluck, et al.
Publicado: (2014) -
Integrate GWAS, eQTL, and mQTL Data to Identify Alzheimer’s Disease-Related Genes
por: Zhao, Tianyi, et al.
Publicado: (2019) -
Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx
por: Gay, Nicole R., et al.
Publicado: (2020) -
Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
por: Porcu, Eleonora, et al.
Publicado: (2019)