Cargando…
Laser systems for time-resolved experiments at the Pohang Accelerator Laboratory X-ray Free-Electron Laser beamlines
Optical laser systems for ultrafast X-ray sciences have been established at the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) beamlines. Three Ti:sapphire regenerative amplifier systems are synchronized to the XFEL with femtosecond precision, and the low temporal jitter of the P...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792299/ https://www.ncbi.nlm.nih.gov/pubmed/31074451 http://dx.doi.org/10.1107/S1600577519003515 |
Sumario: | Optical laser systems for ultrafast X-ray sciences have been established at the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) beamlines. Three Ti:sapphire regenerative amplifier systems are synchronized to the XFEL with femtosecond precision, and the low temporal jitter of the PAL-XFEL results in an experimental time resolution below 150 fs (full width at half-maximum). A fundamental wave and its harmonics are currently provided for all beamlines, and tunable sources from ultraviolet to near-infrared are available for one beamline. The position stability of the optical laser extracted from the intensity-based center of mass at the sample position is less than 3% (r.m.s.) of the spot size. |
---|