Cargando…
Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene
BACKGROUND: Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment. OBJECTIV...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Environmental Health Perspectives
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792382/ https://www.ncbi.nlm.nih.gov/pubmed/31246107 http://dx.doi.org/10.1289/EHP5105 |
_version_ | 1783459143662698496 |
---|---|
author | Luo, Yu-Syuan Cichocki, Joseph A. Hsieh, Nan-Hung Lewis, Lauren Wright, Fred A. Threadgill, David W. Chiu, Weihsueh A. Rusyn, Ivan |
author_facet | Luo, Yu-Syuan Cichocki, Joseph A. Hsieh, Nan-Hung Lewis, Lauren Wright, Fred A. Threadgill, David W. Chiu, Weihsueh A. Rusyn, Ivan |
author_sort | Luo, Yu-Syuan |
collection | PubMed |
description | BACKGROUND: Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment. OBJECTIVES: In this study, we aimed to better characterize the contribution of glutathione (GSH) conjugation to kidney toxicity of PERC and the degree of associated interindividual toxicokinetic (TK) and toxicodynamic (TD) variability by using the Collaborative Cross (CC) mouse population. METHODS: Male mice from 45 strains were intragastrically dosed with PERC ([Formula: see text]) or vehicle (5% Alkamuls EL-620 in saline), and time-course samples were collected for up to 24 h. Population variability in TK of S-(1,2,2-trichlorovinyl)GSH (TCVG), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (NAcTCVC) was quantified in serum, liver, and kidney, and analyzed using a toxicokinetic model. Effects of PERC on kidney weight, fatty acid metabolism–associated genes [Acot1 (Acyl-CoA thioesterase 1), Fabp1 (fatty acid-binding protein 1), and Ehhadh (enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase)], and a marker of proximal tubular injury [KIM-1 (kidney injury molecule-1)/Hepatitis A virus cellular receptor 1 (Havcr1)] were evaluated. Finally, quantitative data on interstrain variability in both formation of GSH conjugation metabolites of PERC and its kidney effects was used to calculate adjustment factors for the interindividual variability in both TK and TD. RESULTS: Mice treated with PERC had significantly lower kidney weight, higher kidney-to-body weight (BW) ratio, and higher expression of fatty acid metabolism–associated genes (Acot1, Fabp1, and Ehhadh) and a marker of proximal tubular injury (KIM-1/Havcr1). Liver levels of TCVG were significantly correlated with KIM-1/Havcr1 in kidney, consistent with kidney injury being associated with GSH conjugation. We found that the default uncertainty factor for human variability may be marginally adequate to protect 95%, but not more, of the population for kidney toxicity mediated by PERC. DISCUSSION: Overall, this study demonstrates the utility of the CC mouse population in characterizing metabolism–toxicity interactions and quantifying interindividual variability. Further refinement of the characterization of interindividual variability can be accomplished by incorporating these data into in silico population models both for TK (such as a physiologically based pharmacokinetic model), as well as for toxicodynamic responses. https://doi.org/10.1289/EHP5105 |
format | Online Article Text |
id | pubmed-6792382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Environmental Health Perspectives |
record_format | MEDLINE/PubMed |
spelling | pubmed-67923822019-11-06 Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene Luo, Yu-Syuan Cichocki, Joseph A. Hsieh, Nan-Hung Lewis, Lauren Wright, Fred A. Threadgill, David W. Chiu, Weihsueh A. Rusyn, Ivan Environ Health Perspect Research BACKGROUND: Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment. OBJECTIVES: In this study, we aimed to better characterize the contribution of glutathione (GSH) conjugation to kidney toxicity of PERC and the degree of associated interindividual toxicokinetic (TK) and toxicodynamic (TD) variability by using the Collaborative Cross (CC) mouse population. METHODS: Male mice from 45 strains were intragastrically dosed with PERC ([Formula: see text]) or vehicle (5% Alkamuls EL-620 in saline), and time-course samples were collected for up to 24 h. Population variability in TK of S-(1,2,2-trichlorovinyl)GSH (TCVG), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (NAcTCVC) was quantified in serum, liver, and kidney, and analyzed using a toxicokinetic model. Effects of PERC on kidney weight, fatty acid metabolism–associated genes [Acot1 (Acyl-CoA thioesterase 1), Fabp1 (fatty acid-binding protein 1), and Ehhadh (enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase)], and a marker of proximal tubular injury [KIM-1 (kidney injury molecule-1)/Hepatitis A virus cellular receptor 1 (Havcr1)] were evaluated. Finally, quantitative data on interstrain variability in both formation of GSH conjugation metabolites of PERC and its kidney effects was used to calculate adjustment factors for the interindividual variability in both TK and TD. RESULTS: Mice treated with PERC had significantly lower kidney weight, higher kidney-to-body weight (BW) ratio, and higher expression of fatty acid metabolism–associated genes (Acot1, Fabp1, and Ehhadh) and a marker of proximal tubular injury (KIM-1/Havcr1). Liver levels of TCVG were significantly correlated with KIM-1/Havcr1 in kidney, consistent with kidney injury being associated with GSH conjugation. We found that the default uncertainty factor for human variability may be marginally adequate to protect 95%, but not more, of the population for kidney toxicity mediated by PERC. DISCUSSION: Overall, this study demonstrates the utility of the CC mouse population in characterizing metabolism–toxicity interactions and quantifying interindividual variability. Further refinement of the characterization of interindividual variability can be accomplished by incorporating these data into in silico population models both for TK (such as a physiologically based pharmacokinetic model), as well as for toxicodynamic responses. https://doi.org/10.1289/EHP5105 Environmental Health Perspectives 2019-06-27 /pmc/articles/PMC6792382/ /pubmed/31246107 http://dx.doi.org/10.1289/EHP5105 Text en EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. |
spellingShingle | Research Luo, Yu-Syuan Cichocki, Joseph A. Hsieh, Nan-Hung Lewis, Lauren Wright, Fred A. Threadgill, David W. Chiu, Weihsueh A. Rusyn, Ivan Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene |
title | Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene |
title_full | Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene |
title_fullStr | Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene |
title_full_unstemmed | Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene |
title_short | Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene |
title_sort | using collaborative cross mouse population to fill data gaps in risk assessment: a case study of population-based analysis of toxicokinetics and kidney toxicodynamics of tetrachloroethylene |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792382/ https://www.ncbi.nlm.nih.gov/pubmed/31246107 http://dx.doi.org/10.1289/EHP5105 |
work_keys_str_mv | AT luoyusyuan usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene AT cichockijosepha usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene AT hsiehnanhung usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene AT lewislauren usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene AT wrightfreda usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene AT threadgilldavidw usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene AT chiuweihsueha usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene AT rusynivan usingcollaborativecrossmousepopulationtofilldatagapsinriskassessmentacasestudyofpopulationbasedanalysisoftoxicokineticsandkidneytoxicodynamicsoftetrachloroethylene |