Cargando…
Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes
Giant viruses have remarkable genomic repertoires—blurring the line with cellular life—and act as top–down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792449/ https://www.ncbi.nlm.nih.gov/pubmed/31587639 http://dx.doi.org/10.1098/rstb.2019.0086 |
_version_ | 1783459158230564864 |
---|---|
author | Needham, David M. Poirier, Camille Hehenberger, Elisabeth Jiménez, Valeria Swalwell, Jarred E. Santoro, Alyson E. Worden, Alexandra Z. |
author_facet | Needham, David M. Poirier, Camille Hehenberger, Elisabeth Jiménez, Valeria Swalwell, Jarred E. Santoro, Alyson E. Worden, Alexandra Z. |
author_sort | Needham, David M. |
collection | PubMed |
description | Giant viruses have remarkable genomic repertoires—blurring the line with cellular life—and act as top–down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four ‘PacV’ partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10(−5)), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence–absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue ‘Single cell ecology’. |
format | Online Article Text |
id | pubmed-6792449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67924492019-10-30 Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes Needham, David M. Poirier, Camille Hehenberger, Elisabeth Jiménez, Valeria Swalwell, Jarred E. Santoro, Alyson E. Worden, Alexandra Z. Philos Trans R Soc Lond B Biol Sci Articles Giant viruses have remarkable genomic repertoires—blurring the line with cellular life—and act as top–down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four ‘PacV’ partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10(−5)), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence–absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue ‘Single cell ecology’. The Royal Society 2019-11-25 2019-10-07 /pmc/articles/PMC6792449/ /pubmed/31587639 http://dx.doi.org/10.1098/rstb.2019.0086 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Needham, David M. Poirier, Camille Hehenberger, Elisabeth Jiménez, Valeria Swalwell, Jarred E. Santoro, Alyson E. Worden, Alexandra Z. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes |
title | Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes |
title_full | Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes |
title_fullStr | Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes |
title_full_unstemmed | Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes |
title_short | Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes |
title_sort | targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792449/ https://www.ncbi.nlm.nih.gov/pubmed/31587639 http://dx.doi.org/10.1098/rstb.2019.0086 |
work_keys_str_mv | AT needhamdavidm targetedmetagenomicrecoveryoffourdivergentvirusesrevealssharedanddistinctivecharacteristicsofgiantvirusesofmarineeukaryotes AT poiriercamille targetedmetagenomicrecoveryoffourdivergentvirusesrevealssharedanddistinctivecharacteristicsofgiantvirusesofmarineeukaryotes AT hehenbergerelisabeth targetedmetagenomicrecoveryoffourdivergentvirusesrevealssharedanddistinctivecharacteristicsofgiantvirusesofmarineeukaryotes AT jimenezvaleria targetedmetagenomicrecoveryoffourdivergentvirusesrevealssharedanddistinctivecharacteristicsofgiantvirusesofmarineeukaryotes AT swalwelljarrede targetedmetagenomicrecoveryoffourdivergentvirusesrevealssharedanddistinctivecharacteristicsofgiantvirusesofmarineeukaryotes AT santoroalysone targetedmetagenomicrecoveryoffourdivergentvirusesrevealssharedanddistinctivecharacteristicsofgiantvirusesofmarineeukaryotes AT wordenalexandraz targetedmetagenomicrecoveryoffourdivergentvirusesrevealssharedanddistinctivecharacteristicsofgiantvirusesofmarineeukaryotes |