Cargando…

The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis

Drought stress is the most important environmental stress limiting maize production. ZmPTF1, a phosphate starvation-induced basic helix-loop-helix (bHLH) transcription factor, contributes to root development and low-phosphate tolerance in maize. Here, ZmPTF1 expression, drought tolerance, and the un...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhaoxia, Liu, Can, Zhang, Ying, Wang, Baomei, Ran, Qijun, Zhang, Juren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793450/
https://www.ncbi.nlm.nih.gov/pubmed/31267122
http://dx.doi.org/10.1093/jxb/erz307
Descripción
Sumario:Drought stress is the most important environmental stress limiting maize production. ZmPTF1, a phosphate starvation-induced basic helix-loop-helix (bHLH) transcription factor, contributes to root development and low-phosphate tolerance in maize. Here, ZmPTF1 expression, drought tolerance, and the underlying mechanisms were studied by using maize ZmPTF1 overexpression lines and mutants. ZmPTF1 was found to be a positive regulator of root development, ABA synthesis, signalling pathways, and drought tolerance. ZmPTF1 was also found to bind to the G-box element within the promoter of 9-cis-epoxycarotenoid dioxygenase (NCED), C-repeat-binding factor (CBF4), ATAF2/NAC081, NAC30, and other transcription factors, and to act as a positive regulator of the expression of those genes. The dramatically upregulated NCEDs led to increased abscisic acid (ABA) synthesis and activation of the ABA signalling pathway. The up-regulated transcription factors hierarchically regulate the expression of genes involved in root development, stress responses, and modifications of transcriptional regulation. The improved root system, increased ABA content, and activated ABA-, CBF4-, ATAF2-, and NAC30-mediated stress responses increased the drought tolerance of the ZmPTF1 overexpression lines, while the mutants showed opposite trends. This study describes a useful gene for transgenic breeding and helps us understand the role of a bHLH protein in plant root development and stress responses.