Cargando…
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals
The rational design of heterogeneous catalysts relies on the efficient survey of mechanisms by density functional theory (DFT). However, massive reaction networks cannot be sampled effectively as they grow exponentially with the size of reactants. Here we present a statistical principal component an...
Autores principales: | García-Muelas, Rodrigo, López, Núria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794282/ https://www.ncbi.nlm.nih.gov/pubmed/31615991 http://dx.doi.org/10.1038/s41467-019-12709-1 |
Ejemplares similares
-
Metallurgical thermochemistry
por: Kubaschewski, O, et al.
Publicado: (1967) -
Ab Initio Calculation of Surface Thermochemistry for
Popular Solid Transition Metal-Based Species
por: Arshad, Muhammad Fahad, et al.
Publicado: (2021) -
The Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’
por: Hansen, Andreas, et al.
Publicado: (2014) -
Computational thermochemistry : prediction and estimation of molecular thermodynamics /
Publicado: (1998) -
Alkaloids and Selected Topics in Their Thermochemistry
por: Ponikvar-Svet, Maja, et al.
Publicado: (2021)