Cargando…

Bacterial Longevity Requires Protein Synthesis and a Stringent Response

Gram-negative bacteria in infections, biofilms, and industrial settings often stop growing due to nutrient depletion, immune responses, or environmental stresses. Bacteria in this state tend to be tolerant to antibiotics and are often referred to as dormant. Rhodopseudomonas palustris, a phototrophi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Liang, Ma, Hongyu, Nakayasu, Ernesto S., Payne, Samuel H., Morris, David R., Harwood, Caroline S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794480/
https://www.ncbi.nlm.nih.gov/pubmed/31615958
http://dx.doi.org/10.1128/mBio.02189-19
Descripción
Sumario:Gram-negative bacteria in infections, biofilms, and industrial settings often stop growing due to nutrient depletion, immune responses, or environmental stresses. Bacteria in this state tend to be tolerant to antibiotics and are often referred to as dormant. Rhodopseudomonas palustris, a phototrophic alphaproteobacterium, can remain fully viable for more than 4 months when its growth is arrested. Here, we show that protein synthesis, specific proteins involved in translation, and a stringent response are required for this remarkable longevity. Because it can generate ATP from light during growth arrest, R. palustris is an extreme example of a bacterial species that will stay alive for long periods of time as a relatively homogeneous population of cells and it is thus an excellent model organism for studies of bacterial longevity. There is evidence that other Gram-negative species also continue to synthesize proteins during growth arrest and that a stringent response is required for their longevity as well. Our observations challenge the notion that growth-arrested cells are necessarily dormant and metabolically inactive and suggest that such bacteria may have a level of metabolic activity that is higher than many would have assumed. Our results also expand our mechanistic understanding of a crucial but understudied phase of the bacterial life cycle.