Cargando…
Reducing the energy cost of walking in older adults using a passive hip flexion device
BACKGROUND: Elevated energy cost is a hallmark feature of gait in older adults. As such, older adults display a general avoidance of walking which contributes to declining health status and risk of morbidity. Exoskeletons offer a great potential for lowering the energy cost of walking, however their...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794907/ https://www.ncbi.nlm.nih.gov/pubmed/31615535 http://dx.doi.org/10.1186/s12984-019-0599-4 |
Sumario: | BACKGROUND: Elevated energy cost is a hallmark feature of gait in older adults. As such, older adults display a general avoidance of walking which contributes to declining health status and risk of morbidity. Exoskeletons offer a great potential for lowering the energy cost of walking, however their complexity and cost often limit their use. To overcome some of these issues, in the present work we propose a passive wearable assistive device, namely Exoband, that applies a torque to the hip flexors thus reducing the net metabolic power of wearers. METHODS: Nine participants (age: 62.1 ± 5.6 yr; height: 1.71 ± 0.05 m; weight: 76.3 ± 11.9 kg) walked on a treadmill at a speed of 1.1 m/s with and without the Exoband. Metabolic power was measured by indirect calorimetry and spatio-temporal parameters measured using an optical measurement system. Heart rate and ratings of perceived exertion were recorded during data collection to monitor relative intensity of the walking trials. RESULTS: The Exoband was able to provide a consistent torque (~ 0.03–0.05 Nm/kg of peak torque) to the wearers. When walking with the Exoband, participants displayed a lower net metabolic power with respect to free walking (− 3.3 ± 3.0%; p = 0.02). There were no differences in spatio-temporal parameters or relative intensities when walking with or without the Exoband. CONCLUSIONS: This study demonstrated that it is possible to reduce metabolic power during walking in older adults with the assistance of a passive device that applies a torque to the hip joint. Wearable, lightweight and low-cost devices such as the Exoband have the potential to make walking less metabolically demanding for older individuals. |
---|