Cargando…

Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques

INTRODUCTION: As one of the most prevalent chronic diseases in the United States, diabetes, especially type 2 diabetes, affects the health of millions of people and puts an enormous financial burden on the US economy. We aimed to develop predictive models to identify risk factors for type 2 diabetes...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Zidian, Nikolayeva, Olga, Luo, Jiebo, Li, Dongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Centers for Disease Control and Prevention 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795062/
https://www.ncbi.nlm.nih.gov/pubmed/31538566
http://dx.doi.org/10.5888/pcd16.190109
Descripción
Sumario:INTRODUCTION: As one of the most prevalent chronic diseases in the United States, diabetes, especially type 2 diabetes, affects the health of millions of people and puts an enormous financial burden on the US economy. We aimed to develop predictive models to identify risk factors for type 2 diabetes, which could help facilitate early diagnosis and intervention and also reduce medical costs. METHODS: We analyzed cross-sectional data on 138,146 participants, including 20,467 with type 2 diabetes, from the 2014 Behavioral Risk Factor Surveillance System. We built several machine learning models for predicting type 2 diabetes, including support vector machine, decision tree, logistic regression, random forest, neural network, and Gaussian Naive Bayes classifiers. We used univariable and multivariable weighted logistic regression models to investigate the associations of potential risk factors with type 2 diabetes. RESULTS: All predictive models for type 2 diabetes achieved a high area under the curve (AUC), ranging from 0.7182 to 0.7949. Although the neural network model had the highest accuracy (82.4%), specificity (90.2%), and AUC (0.7949), the decision tree model had the highest sensitivity (51.6%) for type 2 diabetes. We found that people who slept 9 or more hours per day (adjusted odds ratio [aOR] = 1.13, 95% confidence interval [CI], 1.03–1.25) or had checkup frequency of less than 1 year (aOR = 2.31, 95% CI, 1.86–2.85) had higher risk for type 2 diabetes. CONCLUSION: Of the 8 predictive models, the neural network model gave the best model performance with the highest AUC value; however, the decision tree model is preferred for initial screening for type 2 diabetes because it had the highest sensitivity and, therefore, detection rate. We confirmed previously reported risk factors and also identified sleeping time and frequency of checkup as 2 new potential risk factors related to type 2 diabetes.