Cargando…

De novo transcriptome of Gymnema sylvestre identified putative lncRNA and genes regulating terpenoid biosynthesis pathway

Gymnema sylvestre is a highly valuable medicinal plant in traditional Indian system of medicine and used in many polyherbal formulations especially in treating diabetes. However, the lack of genomic resources has impeded its research at molecular level. The present study investigated functional gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayachit, Garima, Shaikh, Inayatullah, Sharma, Preeti, Jani, Bhavika, Shukla, Labdhi, Sharma, Priyanka, Bhairappanavar, Shivarudrappa B., Joshi, Chaitanya, Das, Jayashankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795813/
https://www.ncbi.nlm.nih.gov/pubmed/31619732
http://dx.doi.org/10.1038/s41598-019-51355-x
Descripción
Sumario:Gymnema sylvestre is a highly valuable medicinal plant in traditional Indian system of medicine and used in many polyherbal formulations especially in treating diabetes. However, the lack of genomic resources has impeded its research at molecular level. The present study investigated functional gene profile of G. sylvestre via RNA sequencing technology. The de novo assembly of 88.9 million high quality reads yielded 23,126 unigenes, of which 18116 were annotated against databases such as NCBI nr database, gene ontology (GO), KEGG, Pfam, CDD, PlantTFcat, UniProt & GreeNC. Total 808 unigenes mapped to 78 different Transcription Factor families, whereas 39 unigenes assigned to CYP450 and 111 unigenes coding for enzymes involved in the biosynthesis of terpenoids including transcripts for synthesis of important compounds like Vitamin E, beta-amyrin and squalene. Among them, presence of six important enzyme coding transcripts were validated using qRT-PCR, which showed high expression of enzymes involved in methyl-erythritol phosphate (MEP) pathway. This study also revealed 1428 simple sequence repeats (SSRs), which may aid in molecular breeding studies. Besides this, 8 putative long non-coding RNAs (lncRNAs) were predicted from un-annotated sequences, which may hold key role in regulation of essential biological processes in G. sylvestre. The study provides an opportunity for future functional genomic studies and to uncover functions of the lncRNAs in G. sylvestre.