Cargando…

Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials

Natural sulfide rich deposits are common in coastal areas worldwide, including along the Baltic Sea coast. When artificial drainage exposes these deposits to atmospheric oxygen, iron sulfide minerals in the soils are rapidly oxidized. This process turns the potential acid sulfate soils into actual a...

Descripción completa

Detalles Bibliográficos
Autores principales: Högfors-Rönnholm, Eva, Lopez-Fernandez, Margarita, Christel, Stephan, Brambilla, Diego, Huntemann, Marcel, Clum, Alicia, Foster, Brian, Foster, Bryce, Roux, Simon, Palaniappan, Krishnaveni, Varghese, Neha, Mukherjee, Supratim, Reddy, T. B. K., Daum, Chris, Copeland, Alex, Chen, I-Min A., Ivanova, Natalia N., Kyrpides, Nikos C., Harmon-Smith, Miranda, Eloe-Fadrosh, Emiley A., Lundin, Daniel, Engblom, Sten, Dopson, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795848/
https://www.ncbi.nlm.nih.gov/pubmed/31619684
http://dx.doi.org/10.1038/s41597-019-0222-3
_version_ 1783459517381476352
author Högfors-Rönnholm, Eva
Lopez-Fernandez, Margarita
Christel, Stephan
Brambilla, Diego
Huntemann, Marcel
Clum, Alicia
Foster, Brian
Foster, Bryce
Roux, Simon
Palaniappan, Krishnaveni
Varghese, Neha
Mukherjee, Supratim
Reddy, T. B. K.
Daum, Chris
Copeland, Alex
Chen, I-Min A.
Ivanova, Natalia N.
Kyrpides, Nikos C.
Harmon-Smith, Miranda
Eloe-Fadrosh, Emiley A.
Lundin, Daniel
Engblom, Sten
Dopson, Mark
author_facet Högfors-Rönnholm, Eva
Lopez-Fernandez, Margarita
Christel, Stephan
Brambilla, Diego
Huntemann, Marcel
Clum, Alicia
Foster, Brian
Foster, Bryce
Roux, Simon
Palaniappan, Krishnaveni
Varghese, Neha
Mukherjee, Supratim
Reddy, T. B. K.
Daum, Chris
Copeland, Alex
Chen, I-Min A.
Ivanova, Natalia N.
Kyrpides, Nikos C.
Harmon-Smith, Miranda
Eloe-Fadrosh, Emiley A.
Lundin, Daniel
Engblom, Sten
Dopson, Mark
author_sort Högfors-Rönnholm, Eva
collection PubMed
description Natural sulfide rich deposits are common in coastal areas worldwide, including along the Baltic Sea coast. When artificial drainage exposes these deposits to atmospheric oxygen, iron sulfide minerals in the soils are rapidly oxidized. This process turns the potential acid sulfate soils into actual acid sulfate soils and mobilizes large quantities of acidity and leachable toxic metals that cause severe environmental problems. It is known that acidophilic microorganisms living in acid sulfate soils catalyze iron sulfide mineral oxidation. However, only a few studies regarding these communities have been published. In this study, we sampled the oxidized actual acid sulfate soil, the transition zone where oxidation is actively taking place, and the deepest un-oxidized potential acid sulfate soil. Nucleic acids were extracted and 16S rRNA gene amplicons, metagenomes, and metatranscriptomes generated to gain a detailed insight into the communities and their activities. The project will be of great use to microbiologists, environmental biologists, geochemists, and geologists as there is hydrological and geochemical monitoring from the site stretching back for many years.
format Online
Article
Text
id pubmed-6795848
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67958482019-10-18 Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials Högfors-Rönnholm, Eva Lopez-Fernandez, Margarita Christel, Stephan Brambilla, Diego Huntemann, Marcel Clum, Alicia Foster, Brian Foster, Bryce Roux, Simon Palaniappan, Krishnaveni Varghese, Neha Mukherjee, Supratim Reddy, T. B. K. Daum, Chris Copeland, Alex Chen, I-Min A. Ivanova, Natalia N. Kyrpides, Nikos C. Harmon-Smith, Miranda Eloe-Fadrosh, Emiley A. Lundin, Daniel Engblom, Sten Dopson, Mark Sci Data Data Descriptor Natural sulfide rich deposits are common in coastal areas worldwide, including along the Baltic Sea coast. When artificial drainage exposes these deposits to atmospheric oxygen, iron sulfide minerals in the soils are rapidly oxidized. This process turns the potential acid sulfate soils into actual acid sulfate soils and mobilizes large quantities of acidity and leachable toxic metals that cause severe environmental problems. It is known that acidophilic microorganisms living in acid sulfate soils catalyze iron sulfide mineral oxidation. However, only a few studies regarding these communities have been published. In this study, we sampled the oxidized actual acid sulfate soil, the transition zone where oxidation is actively taking place, and the deepest un-oxidized potential acid sulfate soil. Nucleic acids were extracted and 16S rRNA gene amplicons, metagenomes, and metatranscriptomes generated to gain a detailed insight into the communities and their activities. The project will be of great use to microbiologists, environmental biologists, geochemists, and geologists as there is hydrological and geochemical monitoring from the site stretching back for many years. Nature Publishing Group UK 2019-10-16 /pmc/articles/PMC6795848/ /pubmed/31619684 http://dx.doi.org/10.1038/s41597-019-0222-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.
spellingShingle Data Descriptor
Högfors-Rönnholm, Eva
Lopez-Fernandez, Margarita
Christel, Stephan
Brambilla, Diego
Huntemann, Marcel
Clum, Alicia
Foster, Brian
Foster, Bryce
Roux, Simon
Palaniappan, Krishnaveni
Varghese, Neha
Mukherjee, Supratim
Reddy, T. B. K.
Daum, Chris
Copeland, Alex
Chen, I-Min A.
Ivanova, Natalia N.
Kyrpides, Nikos C.
Harmon-Smith, Miranda
Eloe-Fadrosh, Emiley A.
Lundin, Daniel
Engblom, Sten
Dopson, Mark
Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials
title Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials
title_full Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials
title_fullStr Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials
title_full_unstemmed Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials
title_short Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials
title_sort metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795848/
https://www.ncbi.nlm.nih.gov/pubmed/31619684
http://dx.doi.org/10.1038/s41597-019-0222-3
work_keys_str_mv AT hogforsronnholmeva metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT lopezfernandezmargarita metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT christelstephan metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT brambilladiego metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT huntemannmarcel metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT clumalicia metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT fosterbrian metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT fosterbryce metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT rouxsimon metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT palaniappankrishnaveni metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT vargheseneha metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT mukherjeesupratim metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT reddytbk metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT daumchris metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT copelandalex metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT chenimina metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT ivanovanatalian metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT kyrpidesnikosc metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT harmonsmithmiranda metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT eloefadroshemileya metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT lundindaniel metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT engblomsten metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials
AT dopsonmark metagenomesandmetatranscriptomesfromborealpotentialandactualacidsulfatesoilmaterials