Cargando…
Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction
The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been env...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Crystallographic Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796191/ https://www.ncbi.nlm.nih.gov/pubmed/31649964 http://dx.doi.org/10.1063/1.5120864 |
_version_ | 1783459539254771712 |
---|---|
author | Shen, X. Nunes, J. P. F. Yang, J. Jobe, R. K. Li, R. K. Lin, Ming-Fu Moore, B. Niebuhr, M. Weathersby, S. P. Wolf, T. J. A. Yoneda, C. Guehr, Markus Centurion, Martin Wang, X. J. |
author_facet | Shen, X. Nunes, J. P. F. Yang, J. Jobe, R. K. Li, R. K. Lin, Ming-Fu Moore, B. Niebuhr, M. Weathersby, S. P. Wolf, T. J. A. Yoneda, C. Guehr, Markus Centurion, Martin Wang, X. J. |
author_sort | Shen, X. |
collection | PubMed |
description | The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned—making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 Å spatial resolution, and 0.22 Å(−1) reciprocal-space resolution. Such high spatial-temporal resolution has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal resolution, and long-term stability of the apparatus are systematically characterized. |
format | Online Article Text |
id | pubmed-6796191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Crystallographic Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-67961912019-10-24 Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction Shen, X. Nunes, J. P. F. Yang, J. Jobe, R. K. Li, R. K. Lin, Ming-Fu Moore, B. Niebuhr, M. Weathersby, S. P. Wolf, T. J. A. Yoneda, C. Guehr, Markus Centurion, Martin Wang, X. J. Struct Dyn ARTICLES The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned—making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 Å spatial resolution, and 0.22 Å(−1) reciprocal-space resolution. Such high spatial-temporal resolution has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal resolution, and long-term stability of the apparatus are systematically characterized. American Crystallographic Association 2019-10-15 /pmc/articles/PMC6796191/ /pubmed/31649964 http://dx.doi.org/10.1063/1.5120864 Text en © 2019 Author(s). 2329-7778/2019/6(5)/054305/9 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | ARTICLES Shen, X. Nunes, J. P. F. Yang, J. Jobe, R. K. Li, R. K. Lin, Ming-Fu Moore, B. Niebuhr, M. Weathersby, S. P. Wolf, T. J. A. Yoneda, C. Guehr, Markus Centurion, Martin Wang, X. J. Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction |
title | Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction |
title_full | Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction |
title_fullStr | Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction |
title_full_unstemmed | Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction |
title_short | Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction |
title_sort | femtosecond gas-phase mega-electron-volt ultrafast electron diffraction |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796191/ https://www.ncbi.nlm.nih.gov/pubmed/31649964 http://dx.doi.org/10.1063/1.5120864 |
work_keys_str_mv | AT shenx femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT nunesjpf femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT yangj femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT joberk femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT lirk femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT linmingfu femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT mooreb femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT niebuhrm femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT weathersbysp femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT wolftja femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT yonedac femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT guehrmarkus femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT centurionmartin femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction AT wangxj femtosecondgasphasemegaelectronvoltultrafastelectrondiffraction |