Cargando…
Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
BACKGROUND: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information. METHODS: Motivated by the ability of recurrent neural networks (RNN) in...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796503/ https://www.ncbi.nlm.nih.gov/pubmed/31420302 http://dx.doi.org/10.1016/j.ebiom.2019.08.023 |
_version_ | 1783459617206960128 |
---|---|
author | Yan, Weizheng Calhoun, Vince Song, Ming Cui, Yue Yan, Hao Liu, Shengfeng Fan, Lingzhong Zuo, Nianming Yang, Zhengyi Xu, Kaibin Yan, Jun Lv, Luxian Chen, Jun Chen, Yunchun Guo, Hua Li, Peng Lu, Lin Wan, Ping Wang, Huaning Wang, Huiling Yang, Yongfeng Zhang, Hongxing Zhang, Dai Jiang, Tianzi Sui, Jing |
author_facet | Yan, Weizheng Calhoun, Vince Song, Ming Cui, Yue Yan, Hao Liu, Shengfeng Fan, Lingzhong Zuo, Nianming Yang, Zhengyi Xu, Kaibin Yan, Jun Lv, Luxian Chen, Jun Chen, Yunchun Guo, Hua Li, Peng Lu, Lin Wan, Ping Wang, Huaning Wang, Huiling Yang, Yongfeng Zhang, Hongxing Zhang, Dai Jiang, Tianzi Sui, Jing |
author_sort | Yan, Weizheng |
collection | PubMed |
description | BACKGROUND: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information. METHODS: Motivated by the ability of recurrent neural networks (RNN) in capturing dynamic information of time sequences, we propose a multi-scale RNN model, which enables classification between 558 schizophrenia and 542 healthy controls by using time courses of fMRI independent components (ICs) directly. To increase interpretability, we also propose a leave-one-IC-out looping strategy for estimating the top contributing ICs. FINDINGS: Accuracies of 83·2% and 80·2% were obtained respectively for the multi-site pooling and leave-one-site-out transfer classification. Subsequently, dorsal striatum and cerebellum components contribute the top two group-discriminative time courses, which is true even when adopting different brain atlases to extract time series. INTERPRETATION: This is the first attempt to apply a multi-scale RNN model directly on fMRI time courses for classification of mental disorders, and shows the potential for multi-scale RNN-based neuroimaging classifications. FUND: Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, National Institutes of Health Grants, National Science Foundation. |
format | Online Article Text |
id | pubmed-6796503 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-67965032019-10-22 Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data Yan, Weizheng Calhoun, Vince Song, Ming Cui, Yue Yan, Hao Liu, Shengfeng Fan, Lingzhong Zuo, Nianming Yang, Zhengyi Xu, Kaibin Yan, Jun Lv, Luxian Chen, Jun Chen, Yunchun Guo, Hua Li, Peng Lu, Lin Wan, Ping Wang, Huaning Wang, Huiling Yang, Yongfeng Zhang, Hongxing Zhang, Dai Jiang, Tianzi Sui, Jing EBioMedicine Research paper BACKGROUND: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information. METHODS: Motivated by the ability of recurrent neural networks (RNN) in capturing dynamic information of time sequences, we propose a multi-scale RNN model, which enables classification between 558 schizophrenia and 542 healthy controls by using time courses of fMRI independent components (ICs) directly. To increase interpretability, we also propose a leave-one-IC-out looping strategy for estimating the top contributing ICs. FINDINGS: Accuracies of 83·2% and 80·2% were obtained respectively for the multi-site pooling and leave-one-site-out transfer classification. Subsequently, dorsal striatum and cerebellum components contribute the top two group-discriminative time courses, which is true even when adopting different brain atlases to extract time series. INTERPRETATION: This is the first attempt to apply a multi-scale RNN model directly on fMRI time courses for classification of mental disorders, and shows the potential for multi-scale RNN-based neuroimaging classifications. FUND: Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, National Institutes of Health Grants, National Science Foundation. Elsevier 2019-08-13 /pmc/articles/PMC6796503/ /pubmed/31420302 http://dx.doi.org/10.1016/j.ebiom.2019.08.023 Text en © 2019 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research paper Yan, Weizheng Calhoun, Vince Song, Ming Cui, Yue Yan, Hao Liu, Shengfeng Fan, Lingzhong Zuo, Nianming Yang, Zhengyi Xu, Kaibin Yan, Jun Lv, Luxian Chen, Jun Chen, Yunchun Guo, Hua Li, Peng Lu, Lin Wan, Ping Wang, Huaning Wang, Huiling Yang, Yongfeng Zhang, Hongxing Zhang, Dai Jiang, Tianzi Sui, Jing Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data |
title | Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data |
title_full | Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data |
title_fullStr | Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data |
title_full_unstemmed | Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data |
title_short | Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data |
title_sort | discriminating schizophrenia using recurrent neural network applied on time courses of multi-site fmri data |
topic | Research paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796503/ https://www.ncbi.nlm.nih.gov/pubmed/31420302 http://dx.doi.org/10.1016/j.ebiom.2019.08.023 |
work_keys_str_mv | AT yanweizheng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT calhounvince discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT songming discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT cuiyue discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT yanhao discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT liushengfeng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT fanlingzhong discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT zuonianming discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT yangzhengyi discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT xukaibin discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT yanjun discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT lvluxian discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT chenjun discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT chenyunchun discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT guohua discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT lipeng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT lulin discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT wanping discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT wanghuaning discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT wanghuiling discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT yangyongfeng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT zhanghongxing discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT zhangdai discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT jiangtianzi discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata AT suijing discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata |