Cargando…

Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data

BACKGROUND: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information. METHODS: Motivated by the ability of recurrent neural networks (RNN) in...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Weizheng, Calhoun, Vince, Song, Ming, Cui, Yue, Yan, Hao, Liu, Shengfeng, Fan, Lingzhong, Zuo, Nianming, Yang, Zhengyi, Xu, Kaibin, Yan, Jun, Lv, Luxian, Chen, Jun, Chen, Yunchun, Guo, Hua, Li, Peng, Lu, Lin, Wan, Ping, Wang, Huaning, Wang, Huiling, Yang, Yongfeng, Zhang, Hongxing, Zhang, Dai, Jiang, Tianzi, Sui, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796503/
https://www.ncbi.nlm.nih.gov/pubmed/31420302
http://dx.doi.org/10.1016/j.ebiom.2019.08.023
_version_ 1783459617206960128
author Yan, Weizheng
Calhoun, Vince
Song, Ming
Cui, Yue
Yan, Hao
Liu, Shengfeng
Fan, Lingzhong
Zuo, Nianming
Yang, Zhengyi
Xu, Kaibin
Yan, Jun
Lv, Luxian
Chen, Jun
Chen, Yunchun
Guo, Hua
Li, Peng
Lu, Lin
Wan, Ping
Wang, Huaning
Wang, Huiling
Yang, Yongfeng
Zhang, Hongxing
Zhang, Dai
Jiang, Tianzi
Sui, Jing
author_facet Yan, Weizheng
Calhoun, Vince
Song, Ming
Cui, Yue
Yan, Hao
Liu, Shengfeng
Fan, Lingzhong
Zuo, Nianming
Yang, Zhengyi
Xu, Kaibin
Yan, Jun
Lv, Luxian
Chen, Jun
Chen, Yunchun
Guo, Hua
Li, Peng
Lu, Lin
Wan, Ping
Wang, Huaning
Wang, Huiling
Yang, Yongfeng
Zhang, Hongxing
Zhang, Dai
Jiang, Tianzi
Sui, Jing
author_sort Yan, Weizheng
collection PubMed
description BACKGROUND: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information. METHODS: Motivated by the ability of recurrent neural networks (RNN) in capturing dynamic information of time sequences, we propose a multi-scale RNN model, which enables classification between 558 schizophrenia and 542 healthy controls by using time courses of fMRI independent components (ICs) directly. To increase interpretability, we also propose a leave-one-IC-out looping strategy for estimating the top contributing ICs. FINDINGS: Accuracies of 83·2% and 80·2% were obtained respectively for the multi-site pooling and leave-one-site-out transfer classification. Subsequently, dorsal striatum and cerebellum components contribute the top two group-discriminative time courses, which is true even when adopting different brain atlases to extract time series. INTERPRETATION: This is the first attempt to apply a multi-scale RNN model directly on fMRI time courses for classification of mental disorders, and shows the potential for multi-scale RNN-based neuroimaging classifications. FUND: Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, National Institutes of Health Grants, National Science Foundation.
format Online
Article
Text
id pubmed-6796503
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-67965032019-10-22 Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data Yan, Weizheng Calhoun, Vince Song, Ming Cui, Yue Yan, Hao Liu, Shengfeng Fan, Lingzhong Zuo, Nianming Yang, Zhengyi Xu, Kaibin Yan, Jun Lv, Luxian Chen, Jun Chen, Yunchun Guo, Hua Li, Peng Lu, Lin Wan, Ping Wang, Huaning Wang, Huiling Yang, Yongfeng Zhang, Hongxing Zhang, Dai Jiang, Tianzi Sui, Jing EBioMedicine Research paper BACKGROUND: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information. METHODS: Motivated by the ability of recurrent neural networks (RNN) in capturing dynamic information of time sequences, we propose a multi-scale RNN model, which enables classification between 558 schizophrenia and 542 healthy controls by using time courses of fMRI independent components (ICs) directly. To increase interpretability, we also propose a leave-one-IC-out looping strategy for estimating the top contributing ICs. FINDINGS: Accuracies of 83·2% and 80·2% were obtained respectively for the multi-site pooling and leave-one-site-out transfer classification. Subsequently, dorsal striatum and cerebellum components contribute the top two group-discriminative time courses, which is true even when adopting different brain atlases to extract time series. INTERPRETATION: This is the first attempt to apply a multi-scale RNN model directly on fMRI time courses for classification of mental disorders, and shows the potential for multi-scale RNN-based neuroimaging classifications. FUND: Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, National Institutes of Health Grants, National Science Foundation. Elsevier 2019-08-13 /pmc/articles/PMC6796503/ /pubmed/31420302 http://dx.doi.org/10.1016/j.ebiom.2019.08.023 Text en © 2019 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research paper
Yan, Weizheng
Calhoun, Vince
Song, Ming
Cui, Yue
Yan, Hao
Liu, Shengfeng
Fan, Lingzhong
Zuo, Nianming
Yang, Zhengyi
Xu, Kaibin
Yan, Jun
Lv, Luxian
Chen, Jun
Chen, Yunchun
Guo, Hua
Li, Peng
Lu, Lin
Wan, Ping
Wang, Huaning
Wang, Huiling
Yang, Yongfeng
Zhang, Hongxing
Zhang, Dai
Jiang, Tianzi
Sui, Jing
Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
title Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
title_full Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
title_fullStr Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
title_full_unstemmed Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
title_short Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
title_sort discriminating schizophrenia using recurrent neural network applied on time courses of multi-site fmri data
topic Research paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796503/
https://www.ncbi.nlm.nih.gov/pubmed/31420302
http://dx.doi.org/10.1016/j.ebiom.2019.08.023
work_keys_str_mv AT yanweizheng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT calhounvince discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT songming discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT cuiyue discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT yanhao discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT liushengfeng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT fanlingzhong discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT zuonianming discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT yangzhengyi discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT xukaibin discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT yanjun discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT lvluxian discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT chenjun discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT chenyunchun discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT guohua discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT lipeng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT lulin discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT wanping discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT wanghuaning discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT wanghuiling discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT yangyongfeng discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT zhanghongxing discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT zhangdai discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT jiangtianzi discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata
AT suijing discriminatingschizophreniausingrecurrentneuralnetworkappliedontimecoursesofmultisitefmridata