Cargando…

Nanonetwork of Coordination Polymer AHMT-Ag for the Effective and Broad Spectrum Detection of 6-Mercaptopurine in Urine and Blood Serum

[Image: see text] Nanocrystalline coordination polymers (NCCPs) have been considered as an incredible electrochemical sensor for the effective detection of biologically dynamic drug 6-mercaptopurine (6-MP). In the present report, a significantly stable infinite arrayed coordination polymeric network...

Descripción completa

Detalles Bibliográficos
Autores principales: Vinita, Tiwari, Madhu, Agnihotri, Neha, Singh, Monika, Singh, Akhilesh Kumar, Prakash, Rajiv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796891/
https://www.ncbi.nlm.nih.gov/pubmed/31646218
http://dx.doi.org/10.1021/acsomega.9b01122
Descripción
Sumario:[Image: see text] Nanocrystalline coordination polymers (NCCPs) have been considered as an incredible electrochemical sensor for the effective detection of biologically dynamic drug 6-mercaptopurine (6-MP). In the present report, a significantly stable infinite arrayed coordination polymeric network was self-assembled via metal with efficient organic tecton 4-amino-3-hydrazino-5-mercapto-1,2,4,-triazole (AHMT) in which silver(I) ions are coordinated by AHMT via hydrazino and exocyclic thiol linkage to form AHMT-Ag NCCP. An efficient and highly sensitive detection of 6-MP is attained owing to eminent electron channeling via polymeric nanocrystallite pores. An effective charge transfer leads to an interface of the AHMT-Ag nano-pores and electrolyte anchored electrode via π–π electron coupling and hydrophobic interaction. The voltammogram exposes acute redox behavior of 6-MP and discloses an impeccable illustration for the AHMT-Ag facilitated oxidation of 6-MP. This unique signature was applied in voltammetric detection of 6-MP in blood serum, human urine, and pharmaceutical formulation (tablet) by a considerable high sensitivity of 0.074, 0.058, and 0.036 μA/μM and a detection limit of 87, 97, and 37 nM, respectively. Thus, the prepared AHMT-Ag NCCP can provide a valuable platform for fabrication of highly sensitive electrochemical devices to assay biologically essential drug molecules.