Cargando…
A Bayesian space–time model for clustering areal units based on their disease trends
Population-level disease risk across a set of non-overlapping areal units varies in space and time, and a large research literature has developed methodology for identifying clusters of areal units exhibiting elevated risks. However, almost no research has extended the clustering paradigm to identif...
Autores principales: | Napier, Gary, Lee, Duncan, Robertson, Chris, Lawson, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797054/ https://www.ncbi.nlm.nih.gov/pubmed/29917057 http://dx.doi.org/10.1093/biostatistics/kxy024 |
Ejemplares similares
-
Modifiable Areal Unit Problem
por: Buzzelli, Michael
Publicado: (2020) -
Space-time covid-19 Bayesian SIR modeling in South Carolina
por: Lawson, Andrew B., et al.
Publicado: (2021) -
Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces
por: Mars, Rogier B., et al.
Publicado: (2018) -
A Systematic Review of Areal Units and Adjacency Used in Bayesian Spatial and Spatio-Temporal Conditional Autoregressive Models in Health Research
por: Tessema, Zemenu Tadesse, et al.
Publicado: (2023) -
Modeling Community Health with Areal Data: Bayesian Inference with Survey Standard Errors and Spatial Structure
por: Donegan, Connor, et al.
Publicado: (2021)