Cargando…

DNA methylation, microRNA expression profiles and their relationships with transcriptome in grass-fed and grain-fed Angus cattle rumen tissue

Rumen is an organ for supplying nutrients for the growth and production of bovine, which might function differently under grass-fed and grain-fed regimens considering the association of gene expression, DNA methylation, and microRNA expression. The objective of this study was to explore the potentia...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yaokun, Carrillo, José A., Ding, Yi, He, Yanghua, Zhao, Chunping, Liu, Jianan, Zan, Linsen, Song, Jiuzhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797229/
https://www.ncbi.nlm.nih.gov/pubmed/31622349
http://dx.doi.org/10.1371/journal.pone.0214559
Descripción
Sumario:Rumen is an organ for supplying nutrients for the growth and production of bovine, which might function differently under grass-fed and grain-fed regimens considering the association of gene expression, DNA methylation, and microRNA expression. The objective of this study was to explore the potential mechanism influencing rumen function of grass-fed and grain-fed animals. Methylated DNA binding domain sequencing (MBD-Seq) and microRNA-Seq were respectively utilized to detect the DNA methylation and microRNA expression in rumen tissue of grass-fed and grain-fed Angus cattle. Combined analysis revealed that the expression of the differentially expressed genes ADAMTS3 and ENPP3 was correlated with the methylation abundance of the corresponding differentially methylated regions (DMRs) inside these two genes, and these two genes were reported to be respectively involved in biosynthesis and regulation of glycosyltransferase activity; the differentially expressed microRNA bta-mir-122 was predicted to possibly target the differentially expressed genes OCLN and RBM47, potentially affecting the rumen function; the microRNA bta-mir-655 was exclusively detected in grain-fed group; its targets were significantly enriched in insulin and TGF-beta signaling pathways, which might worked together to regulate the function of rumen, resulting in different characteristics between grass-fed and grain-fed cattle. Collectively, our results provided insights into understanding the mechanisms determining rumen function and unraveled the biological basis underlying the economic traits to improve the productivity of animals.