Cargando…

Enhanced bone tissue regeneration of a biomimetic cellular scaffold with co‐cultured MSCs‐derived osteogenic and angiogenic cells

OBJECTIVES: The bone tissue engineering primarily focuses on three‐dimensional co‐culture systems, which physical and biological properties resemble the cell matrix of actual tissues. The complex dialogue between bone‐forming and endothelial cells (ECs) in a tissue‐engineered construct will directly...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Limei, Li, Jidong, Zou, Qin, Zuo, Yi, Cai, Bin, Li, Yubao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797511/
https://www.ncbi.nlm.nih.gov/pubmed/31297910
http://dx.doi.org/10.1111/cpr.12658
Descripción
Sumario:OBJECTIVES: The bone tissue engineering primarily focuses on three‐dimensional co‐culture systems, which physical and biological properties resemble the cell matrix of actual tissues. The complex dialogue between bone‐forming and endothelial cells (ECs) in a tissue‐engineered construct will directly regulate angiogenesis and bone regeneration. The purpose of this study was to investigate whether co‐culture between osteogenic and angiogenic cells derived by bone mesenchymal stem cells (MSCs) could affect cell activities and new bone formation. MATERIALS AND METHODS: Mesenchymal stem cells were dually induced to differentiate into osteogenic cells (OMSCs) and ECs; both cell types were co‐cultured at different ratios to investigate their effects and underlying mechanisms through ELISA, RT‐qPCR and MTT assays. The selected cell mixture was transplanted onto a nano‐hydroxyapatite/polyurethane (n‐HA/PU) scaffold to form a cell‐scaffold construct that was implanted in the rat femoral condyles. Histology and micro‐CT were examined for further verification. RESULTS: ELISA and gene expression studies revealed that co‐cultured OMSCs/ECs (0.5/1.5) significantly elevated the transcription levels of osteogenic genes such as ALP, Col‐I and OCN, as well as transcription factors Msx2, Runx2 and Osterix; it also upregulated angiogenic factors of vascular endothelial growth factor (VEGF) and CD31 when compared with cells cultured alone or in other ratios. The optimized OMSCs/ECs group had more abundant calcium phosphate crystal deposition, further facilitated their bone formation in vivo. CONCLUSIONS: The OMSCs/ECs‐scaffold constructs at an optimal cell ratio (0.5/1.5) achieved enhanced osteogenic and angiogenic factor expression and biomineralization, which resulted in more effective bone formation.