Cargando…
Brainglance: Visualizing Group Level MRI Data at One Glance
The vast majority of studies using functional magnetic resonance imaging (fMRI) are analyzed on the group level. Standard group-level analyses, however, come with severe drawbacks: First, they assume functional homogeneity within the group, building on the idea that we use our brains in similar ways...
Autores principales: | Stelzer, Johannes, Lacosse, Eric, Bause, Jonas, Scheffler, Klaus, Lohmann, Gabriele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797611/ https://www.ncbi.nlm.nih.gov/pubmed/31680793 http://dx.doi.org/10.3389/fnins.2019.00972 |
Ejemplares similares
-
LISA improves statistical analysis for fMRI
por: Lohmann, Gabriele, et al.
Publicado: (2018) -
Jumping over baselines with new methods to predict activation maps from resting-state fMRI
por: Lacosse, Eric, et al.
Publicado: (2021) -
Prediction of motion induced magnetic fields for human brain MRI at 3 T
por: Zhou, Jiazheng, et al.
Publicado: (2023) -
Functional mapping of sensorimotor activation in the human thalamus at 9.4 Tesla
por: Charyasz, Edyta, et al.
Publicado: (2023) -
Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping
por: Stelzer, Johannes, et al.
Publicado: (2014)