Cargando…
Obtaining psychological embeddings through joint kernel and metric learning
Psychological embeddings provide a powerful formalism for characterizing human-perceived similarity among members of a stimulus set. Obtaining high-quality embeddings can be costly due to algorithm design, software deployment, and participant compensation. This work aims to advance state-of-the-art...
Autores principales: | Roads, Brett D., Mozer, Michael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797663/ https://www.ncbi.nlm.nih.gov/pubmed/31432329 http://dx.doi.org/10.3758/s13428-019-01285-3 |
Ejemplares similares
-
Using Highlighting to Train Attentional Expertise
por: Roads, Brett, et al.
Publicado: (2016) -
Correction: Using Highlighting to Train Attentional Expertise
por: Roads, Brett, et al.
Publicado: (2016) -
Kernel-based distance metric learning for microarray data classification
por: Xiong, Huilin, et al.
Publicado: (2006) -
Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis
por: Cárdenas-Peña, David, et al.
Publicado: (2017) -
Geometric analysis of the Bergman kernel and metric
por: Krantz, Steven G
Publicado: (2013)