Cargando…
Novel automated vessel pattern characterization of larynx contact endoscopic video images
PURPOSE: Contact endoscopy (CE) is a minimally invasive procedure providing real-time information about the cellular and vascular structure of the superficial layer of laryngeal mucosa. This method can be combined with optical enhancement methods such as narrow band imaging (NBI). However, these tec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797664/ https://www.ncbi.nlm.nih.gov/pubmed/31352673 http://dx.doi.org/10.1007/s11548-019-02034-9 |
_version_ | 1783459880117469184 |
---|---|
author | Esmaeili, Nazila Illanes, Alfredo Boese, Axel Davaris, Nikolaos Arens, Christoph Friebe, Michael |
author_facet | Esmaeili, Nazila Illanes, Alfredo Boese, Axel Davaris, Nikolaos Arens, Christoph Friebe, Michael |
author_sort | Esmaeili, Nazila |
collection | PubMed |
description | PURPOSE: Contact endoscopy (CE) is a minimally invasive procedure providing real-time information about the cellular and vascular structure of the superficial layer of laryngeal mucosa. This method can be combined with optical enhancement methods such as narrow band imaging (NBI). However, these techniques have some problems like subjective interpretation of vascular patterns and difficulty in differentiation between benign and malignant lesions. We propose a novel automated approach for vessel pattern characterization of larynx CE + NBI images in order to solve these problems. METHODS: In this approach, five indicators were computed to characterize the level of vessel’s disorder based on evaluation of consistency of gradient and two-dimensional curvature analysis and then 24 features were extracted from these indicators. The method evaluated the ability of the extracted features to classify CE + NBI images based on the vascular pattern and based on the laryngeal lesions. Four datasets were generated from 32 patients involving 1485 images. The classification scenarios were implemented using four supervised classifiers. RESULTS: For classification of CE + NBI images based on the vascular pattern, polykernel support vector machine (SVM), SVM with radial basis function (RBF), k-nearest neighbor (kNN), and random forest (RF) show an accuracy of 97%, 96%, 96%, and 96%, respectively. For the classification based on the histopathology, Polykernel SVM showed an accuracy of 84%, 86% and 84%, RBF SVM showed an accuracy of 81%, 87% and 83%, kNN showed an accuracy of 89%, 87%, 91%, RF showed an accuracy of 90%, 88% and 91% for classification between benign histopathologies, between malignant histopathologies and between benign and malignant lesions, respectively. CONCLUSION: These promising results show that the proposed method could solve the problem of subjectivity in interpretation of vascular patterns and also support the clinicians in the early detection of benign, pre-malignant and malignant lesions. |
format | Online Article Text |
id | pubmed-6797664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-67976642019-11-01 Novel automated vessel pattern characterization of larynx contact endoscopic video images Esmaeili, Nazila Illanes, Alfredo Boese, Axel Davaris, Nikolaos Arens, Christoph Friebe, Michael Int J Comput Assist Radiol Surg Original Article PURPOSE: Contact endoscopy (CE) is a minimally invasive procedure providing real-time information about the cellular and vascular structure of the superficial layer of laryngeal mucosa. This method can be combined with optical enhancement methods such as narrow band imaging (NBI). However, these techniques have some problems like subjective interpretation of vascular patterns and difficulty in differentiation between benign and malignant lesions. We propose a novel automated approach for vessel pattern characterization of larynx CE + NBI images in order to solve these problems. METHODS: In this approach, five indicators were computed to characterize the level of vessel’s disorder based on evaluation of consistency of gradient and two-dimensional curvature analysis and then 24 features were extracted from these indicators. The method evaluated the ability of the extracted features to classify CE + NBI images based on the vascular pattern and based on the laryngeal lesions. Four datasets were generated from 32 patients involving 1485 images. The classification scenarios were implemented using four supervised classifiers. RESULTS: For classification of CE + NBI images based on the vascular pattern, polykernel support vector machine (SVM), SVM with radial basis function (RBF), k-nearest neighbor (kNN), and random forest (RF) show an accuracy of 97%, 96%, 96%, and 96%, respectively. For the classification based on the histopathology, Polykernel SVM showed an accuracy of 84%, 86% and 84%, RBF SVM showed an accuracy of 81%, 87% and 83%, kNN showed an accuracy of 89%, 87%, 91%, RF showed an accuracy of 90%, 88% and 91% for classification between benign histopathologies, between malignant histopathologies and between benign and malignant lesions, respectively. CONCLUSION: These promising results show that the proposed method could solve the problem of subjectivity in interpretation of vascular patterns and also support the clinicians in the early detection of benign, pre-malignant and malignant lesions. Springer International Publishing 2019-07-27 2019 /pmc/articles/PMC6797664/ /pubmed/31352673 http://dx.doi.org/10.1007/s11548-019-02034-9 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Esmaeili, Nazila Illanes, Alfredo Boese, Axel Davaris, Nikolaos Arens, Christoph Friebe, Michael Novel automated vessel pattern characterization of larynx contact endoscopic video images |
title | Novel automated vessel pattern characterization of larynx contact endoscopic video images |
title_full | Novel automated vessel pattern characterization of larynx contact endoscopic video images |
title_fullStr | Novel automated vessel pattern characterization of larynx contact endoscopic video images |
title_full_unstemmed | Novel automated vessel pattern characterization of larynx contact endoscopic video images |
title_short | Novel automated vessel pattern characterization of larynx contact endoscopic video images |
title_sort | novel automated vessel pattern characterization of larynx contact endoscopic video images |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797664/ https://www.ncbi.nlm.nih.gov/pubmed/31352673 http://dx.doi.org/10.1007/s11548-019-02034-9 |
work_keys_str_mv | AT esmaeilinazila novelautomatedvesselpatterncharacterizationoflarynxcontactendoscopicvideoimages AT illanesalfredo novelautomatedvesselpatterncharacterizationoflarynxcontactendoscopicvideoimages AT boeseaxel novelautomatedvesselpatterncharacterizationoflarynxcontactendoscopicvideoimages AT davarisnikolaos novelautomatedvesselpatterncharacterizationoflarynxcontactendoscopicvideoimages AT arenschristoph novelautomatedvesselpatterncharacterizationoflarynxcontactendoscopicvideoimages AT friebemichael novelautomatedvesselpatterncharacterizationoflarynxcontactendoscopicvideoimages |