Cargando…
Flexible High-Color-Purity Structural Color Filters Based on a Higher-Order Optical Resonance Suppression
We present flexible transmissive structural color filters with high-color-purity based on a higher-order resonance suppression by inserting an ultrathin absorbing layer in the middle of a cavity. A 3rd order Fabry–Pérot (F-P) resonance, which exhibits a narrower bandwidth than a fundamental F-P reso...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797723/ https://www.ncbi.nlm.nih.gov/pubmed/31624284 http://dx.doi.org/10.1038/s41598-019-51165-1 |
Sumario: | We present flexible transmissive structural color filters with high-color-purity based on a higher-order resonance suppression by inserting an ultrathin absorbing layer in the middle of a cavity. A 3rd order Fabry–Pérot (F-P) resonance, which exhibits a narrower bandwidth than a fundamental F-P resonance, is used to produce transmissive colors with an improved color purity. The thin absorbing layer is properly placed at a center of the cavity to highly suppress only a 5th order F-P resonance appearing at a short wavelength range while not affecting the 3rd order F-P resonance for color generation, thus being able to attain the high-color-purity transmissive colors without reducing a transmission efficiency. In addition, angle-insensitive properties are achieved by compensating a net phase shift with a dielectric overlay and using a material with a high refractive index for the cavity medium. Moreover, the transmissive colors on a flexible substrate are demonstrated, presenting that changes in both the resonance wavelength and the transmission efficiency are nearly negligible when the color filters are bent with a bending radius of 5 mm and over 3000 times bending tests. The described approach could pave the way for various applications, such as colored displays, decorative solar panels, and image sensors. |
---|