Cargando…

Coherent-State-Based Twin-Field Quantum Key Distribution

Large-scale quantum communication networks are still a huge challenge due to the rate-distance limit of quantum key distribution (QKD). Recently, twin-field (TF) QKD has been proposed to overcome this limit. Here, we prove that coherent-state-based TF-QKD is a time-reversed entanglement protocol, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Hua-Lei, Chen, Zeng-Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797752/
https://www.ncbi.nlm.nih.gov/pubmed/31624279
http://dx.doi.org/10.1038/s41598-019-50429-0
Descripción
Sumario:Large-scale quantum communication networks are still a huge challenge due to the rate-distance limit of quantum key distribution (QKD). Recently, twin-field (TF) QKD has been proposed to overcome this limit. Here, we prove that coherent-state-based TF-QKD is a time-reversed entanglement protocol, where the entanglement generation is realized with entanglement swapping operation via an entangled coherent state measurement. We propose a coherent-state-based TF-QKD with optimal secret key rate under symmetric and asymmetric channels by using coherent state and cat state coding. Furthermore, we show that our protocol can be converted to all recent coherent-state-based TF-QKD protocols by using our security proof. By using the entanglement purification with two-way classical communication, we improve the transmission distance of all coherent-state-based TF-QKD protocols.