Cargando…
Clinical-learning versus machine-learning for transdiagnostic prediction of psychosis onset in individuals at-risk
Predicting the onset of psychosis in individuals at-risk is based on robust prognostic model building methods including a priori clinical knowledge (also termed clinical-learning) to preselect predictors or machine-learning methods to select predictors automatically. To date, there is no empirical r...
Autores principales: | Fusar-Poli, Paolo, Stringer, Dominic, M. S. Durieux, Alice, Rutigliano, Grazia, Bonoldi, Ilaria, De Micheli, Andrea, Stahl, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797779/ https://www.ncbi.nlm.nih.gov/pubmed/31624229 http://dx.doi.org/10.1038/s41398-019-0600-9 |
Ejemplares similares
-
Transdiagnostic Individualized Clinically Based Risk Calculator for the Detection of Individuals at Risk and the Prediction of Psychosis: Model Refinement Including Nonlinear Effects of Age
por: Fusar-Poli, Paolo, et al.
Publicado: (2019) -
34.2 IMPROVING THE DETECTION OF INDIVIDUALS AT RISK OF PSYCHOSIS IN SECONDARY MENTAL HEALTH CARE
por: Fusar-poli, Paolo, et al.
Publicado: (2018) -
Transdiagnostic Risk Calculator for the Automatic Detection of Individuals at Risk and the Prediction of Psychosis: Second Replication in an Independent National Health Service Trust
por: Fusar-Poli, Paolo, et al.
Publicado: (2019) -
Real-world implementation of precision psychiatry: Transdiagnostic risk calculator for the automatic detection of individuals at-risk of psychosis
por: Oliver, Dominic, et al.
Publicado: (2021) -
Diagnostic and Prognostic Significance of Brief Limited Intermittent Psychotic Symptoms (BLIPS) in Individuals at Ultra High Risk
por: Fusar-Poli, Paolo, et al.
Publicado: (2017)