Cargando…

An accurate registration of the BigBrain dataset with the MNI PD25 and ICBM152 atlases

Brain atlases that encompass detailed anatomical or physiological features are instrumental in the research and surgical planning of various neurological conditions. Magnetic resonance imaging (MRI) has played important roles in neuro-image analysis while histological data remain crucial as a gold s...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Yiming, Lau, Jonathan C., Anderson, Taylor, DeKraker, Jordan, Collins, D. Louis, Peters, Terry, Khan, Ali R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797784/
https://www.ncbi.nlm.nih.gov/pubmed/31624250
http://dx.doi.org/10.1038/s41597-019-0217-0
Descripción
Sumario:Brain atlases that encompass detailed anatomical or physiological features are instrumental in the research and surgical planning of various neurological conditions. Magnetic resonance imaging (MRI) has played important roles in neuro-image analysis while histological data remain crucial as a gold standard to guide and validate such analyses. With cellular-scale resolution, the BigBrain atlas offers 3D histology of a complete human brain, and is highly valuable to the research and clinical community. To bridge the insights at macro- and micro-levels, accurate mapping of BigBrain and established MRI brain atlases is necessary, but the existing registration is unsatisfactory. The described dataset includes co-registration of the BigBrain atlas to the MNI PD25 atlas and the ICBM152 2009b atlases (symmetric and asymmetric versions) in addition to manual segmentation of the basal ganglia, red nucleus, amygdala, and hippocampus for all mentioned atlases. The dataset intends to provide a bridge between insights from histological data and MRI studies in research and neurosurgical planning. The registered atlases, anatomical segmentations, and deformation matrices are available at: https://osf.io/xkqb3/.