Cargando…
Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation
Generalized structured component analysis (GSCA) is a theoretically well-founded approach to component-based structural equation modeling (SEM). This approach utilizes the bootstrap method to estimate the confidence intervals of its parameter estimates without recourse to distributional assumptions,...
Autores principales: | Jung, Kwanghee, Lee, Jaehoon, Gupta, Vibhuti, Cho, Gyeongcheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797821/ https://www.ncbi.nlm.nih.gov/pubmed/31681066 http://dx.doi.org/10.3389/fpsyg.2019.02215 |
Ejemplares similares
-
A Comparative Study on the Performance of GSCA and CSA in Parameter Recovery for Structural Equation Models With Ordinal Observed Variables
por: Jung, Kwanghee, et al.
Publicado: (2018) -
Correcting the Bias Correction for the Bootstrap Confidence Interval in Mediation Analysis
por: Tibbe, Tristan D., et al.
Publicado: (2022) -
Monte Carlo profile confidence intervals for dynamic systems
por: Ionides, E. L., et al.
Publicado: (2017) -
Randomization, bootstrap and Monte Carlo methods in biology/
por: Manly, Bryan F. J., 1944-
Publicado: (1997) -
Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design
por: Krausch, Niels, et al.
Publicado: (2019)