Cargando…

An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation

All protective and pathogenic immune and inflammatory responses rely heavily on leukocyte migration and localization. Chemokines are secreted chemoattractants that orchestrate the positioning and migration of leukocytes through concentration gradients. The mechanisms underlying chemokine gradient es...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalogiros, Dimitris I., Russell, Matthew J., Bonneuil, Willy V., Frattolin, Jennifer, Watson, Daniel, Moore, James E., Kypraios, Theodore, Brook, Bindi S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798077/
https://www.ncbi.nlm.nih.gov/pubmed/31681255
http://dx.doi.org/10.3389/fimmu.2019.01986
_version_ 1783459972274716672
author Kalogiros, Dimitris I.
Russell, Matthew J.
Bonneuil, Willy V.
Frattolin, Jennifer
Watson, Daniel
Moore, James E.
Kypraios, Theodore
Brook, Bindi S.
author_facet Kalogiros, Dimitris I.
Russell, Matthew J.
Bonneuil, Willy V.
Frattolin, Jennifer
Watson, Daniel
Moore, James E.
Kypraios, Theodore
Brook, Bindi S.
author_sort Kalogiros, Dimitris I.
collection PubMed
description All protective and pathogenic immune and inflammatory responses rely heavily on leukocyte migration and localization. Chemokines are secreted chemoattractants that orchestrate the positioning and migration of leukocytes through concentration gradients. The mechanisms underlying chemokine gradient establishment and control include physical as well as biological phenomena. Mathematical models offer the potential to both understand this complexity and suggest interventions to modulate immune function. Constructing models that have powerful predictive capability relies on experimental data to estimate model parameters accurately, but even with a reductionist approach most experiments include multiple cell types, competing interdependent processes and considerable uncertainty. Therefore, we propose the use of reduced modeling and experimental frameworks in complement, to minimize the number of parameters to be estimated. We present a Bayesian optimization framework that accounts for advection and diffusion of a chemokine surrogate and the chemokine CCL19, transport processes that are known to contribute to the establishment of spatio-temporal chemokine gradients. Three examples are provided that demonstrate the estimation of the governing parameters as well as the underlying uncertainty. This study demonstrates how a synergistic approach between experimental and computational modeling benefits from the Bayesian approach to provide a robust analysis of chemokine transport. It provides a building block for a larger research effort to gain holistic insight and generate novel and testable hypotheses in chemokine biology and leukocyte trafficking.
format Online
Article
Text
id pubmed-6798077
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-67980772019-11-01 An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation Kalogiros, Dimitris I. Russell, Matthew J. Bonneuil, Willy V. Frattolin, Jennifer Watson, Daniel Moore, James E. Kypraios, Theodore Brook, Bindi S. Front Immunol Immunology All protective and pathogenic immune and inflammatory responses rely heavily on leukocyte migration and localization. Chemokines are secreted chemoattractants that orchestrate the positioning and migration of leukocytes through concentration gradients. The mechanisms underlying chemokine gradient establishment and control include physical as well as biological phenomena. Mathematical models offer the potential to both understand this complexity and suggest interventions to modulate immune function. Constructing models that have powerful predictive capability relies on experimental data to estimate model parameters accurately, but even with a reductionist approach most experiments include multiple cell types, competing interdependent processes and considerable uncertainty. Therefore, we propose the use of reduced modeling and experimental frameworks in complement, to minimize the number of parameters to be estimated. We present a Bayesian optimization framework that accounts for advection and diffusion of a chemokine surrogate and the chemokine CCL19, transport processes that are known to contribute to the establishment of spatio-temporal chemokine gradients. Three examples are provided that demonstrate the estimation of the governing parameters as well as the underlying uncertainty. This study demonstrates how a synergistic approach between experimental and computational modeling benefits from the Bayesian approach to provide a robust analysis of chemokine transport. It provides a building block for a larger research effort to gain holistic insight and generate novel and testable hypotheses in chemokine biology and leukocyte trafficking. Frontiers Media S.A. 2019-10-11 /pmc/articles/PMC6798077/ /pubmed/31681255 http://dx.doi.org/10.3389/fimmu.2019.01986 Text en Copyright © 2019 Kalogiros, Russell, Bonneuil, Frattolin, Watson, Moore, Kypraios and Brook. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Kalogiros, Dimitris I.
Russell, Matthew J.
Bonneuil, Willy V.
Frattolin, Jennifer
Watson, Daniel
Moore, James E.
Kypraios, Theodore
Brook, Bindi S.
An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation
title An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation
title_full An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation
title_fullStr An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation
title_full_unstemmed An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation
title_short An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation
title_sort integrated pipeline for combining in vitro data and mathematical models using a bayesian parameter inference approach to characterize spatio-temporal chemokine gradient formation
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798077/
https://www.ncbi.nlm.nih.gov/pubmed/31681255
http://dx.doi.org/10.3389/fimmu.2019.01986
work_keys_str_mv AT kalogirosdimitrisi anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT russellmatthewj anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT bonneuilwillyv anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT frattolinjennifer anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT watsondaniel anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT moorejamese anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT kypraiostheodore anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT brookbindis anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT kalogirosdimitrisi integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT russellmatthewj integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT bonneuilwillyv integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT frattolinjennifer integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT watsondaniel integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT moorejamese integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT kypraiostheodore integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation
AT brookbindis integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation