Cargando…
An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation
All protective and pathogenic immune and inflammatory responses rely heavily on leukocyte migration and localization. Chemokines are secreted chemoattractants that orchestrate the positioning and migration of leukocytes through concentration gradients. The mechanisms underlying chemokine gradient es...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798077/ https://www.ncbi.nlm.nih.gov/pubmed/31681255 http://dx.doi.org/10.3389/fimmu.2019.01986 |
_version_ | 1783459972274716672 |
---|---|
author | Kalogiros, Dimitris I. Russell, Matthew J. Bonneuil, Willy V. Frattolin, Jennifer Watson, Daniel Moore, James E. Kypraios, Theodore Brook, Bindi S. |
author_facet | Kalogiros, Dimitris I. Russell, Matthew J. Bonneuil, Willy V. Frattolin, Jennifer Watson, Daniel Moore, James E. Kypraios, Theodore Brook, Bindi S. |
author_sort | Kalogiros, Dimitris I. |
collection | PubMed |
description | All protective and pathogenic immune and inflammatory responses rely heavily on leukocyte migration and localization. Chemokines are secreted chemoattractants that orchestrate the positioning and migration of leukocytes through concentration gradients. The mechanisms underlying chemokine gradient establishment and control include physical as well as biological phenomena. Mathematical models offer the potential to both understand this complexity and suggest interventions to modulate immune function. Constructing models that have powerful predictive capability relies on experimental data to estimate model parameters accurately, but even with a reductionist approach most experiments include multiple cell types, competing interdependent processes and considerable uncertainty. Therefore, we propose the use of reduced modeling and experimental frameworks in complement, to minimize the number of parameters to be estimated. We present a Bayesian optimization framework that accounts for advection and diffusion of a chemokine surrogate and the chemokine CCL19, transport processes that are known to contribute to the establishment of spatio-temporal chemokine gradients. Three examples are provided that demonstrate the estimation of the governing parameters as well as the underlying uncertainty. This study demonstrates how a synergistic approach between experimental and computational modeling benefits from the Bayesian approach to provide a robust analysis of chemokine transport. It provides a building block for a larger research effort to gain holistic insight and generate novel and testable hypotheses in chemokine biology and leukocyte trafficking. |
format | Online Article Text |
id | pubmed-6798077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67980772019-11-01 An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation Kalogiros, Dimitris I. Russell, Matthew J. Bonneuil, Willy V. Frattolin, Jennifer Watson, Daniel Moore, James E. Kypraios, Theodore Brook, Bindi S. Front Immunol Immunology All protective and pathogenic immune and inflammatory responses rely heavily on leukocyte migration and localization. Chemokines are secreted chemoattractants that orchestrate the positioning and migration of leukocytes through concentration gradients. The mechanisms underlying chemokine gradient establishment and control include physical as well as biological phenomena. Mathematical models offer the potential to both understand this complexity and suggest interventions to modulate immune function. Constructing models that have powerful predictive capability relies on experimental data to estimate model parameters accurately, but even with a reductionist approach most experiments include multiple cell types, competing interdependent processes and considerable uncertainty. Therefore, we propose the use of reduced modeling and experimental frameworks in complement, to minimize the number of parameters to be estimated. We present a Bayesian optimization framework that accounts for advection and diffusion of a chemokine surrogate and the chemokine CCL19, transport processes that are known to contribute to the establishment of spatio-temporal chemokine gradients. Three examples are provided that demonstrate the estimation of the governing parameters as well as the underlying uncertainty. This study demonstrates how a synergistic approach between experimental and computational modeling benefits from the Bayesian approach to provide a robust analysis of chemokine transport. It provides a building block for a larger research effort to gain holistic insight and generate novel and testable hypotheses in chemokine biology and leukocyte trafficking. Frontiers Media S.A. 2019-10-11 /pmc/articles/PMC6798077/ /pubmed/31681255 http://dx.doi.org/10.3389/fimmu.2019.01986 Text en Copyright © 2019 Kalogiros, Russell, Bonneuil, Frattolin, Watson, Moore, Kypraios and Brook. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Kalogiros, Dimitris I. Russell, Matthew J. Bonneuil, Willy V. Frattolin, Jennifer Watson, Daniel Moore, James E. Kypraios, Theodore Brook, Bindi S. An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation |
title | An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation |
title_full | An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation |
title_fullStr | An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation |
title_full_unstemmed | An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation |
title_short | An Integrated Pipeline for Combining in vitro Data and Mathematical Models Using a Bayesian Parameter Inference Approach to Characterize Spatio-temporal Chemokine Gradient Formation |
title_sort | integrated pipeline for combining in vitro data and mathematical models using a bayesian parameter inference approach to characterize spatio-temporal chemokine gradient formation |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798077/ https://www.ncbi.nlm.nih.gov/pubmed/31681255 http://dx.doi.org/10.3389/fimmu.2019.01986 |
work_keys_str_mv | AT kalogirosdimitrisi anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT russellmatthewj anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT bonneuilwillyv anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT frattolinjennifer anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT watsondaniel anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT moorejamese anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT kypraiostheodore anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT brookbindis anintegratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT kalogirosdimitrisi integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT russellmatthewj integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT bonneuilwillyv integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT frattolinjennifer integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT watsondaniel integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT moorejamese integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT kypraiostheodore integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation AT brookbindis integratedpipelineforcombininginvitrodataandmathematicalmodelsusingabayesianparameterinferenceapproachtocharacterizespatiotemporalchemokinegradientformation |