Cargando…
SDA: a semi-parametric differential abundance analysis method for metabolomics and proteomics data
BACKGROUND: Identifying differentially abundant features between different experimental groups is a common goal for many metabolomics and proteomics studies. However, analyzing data from mass spectrometry (MS) is difficult because the data may not be normally distributed and there is often a large f...
Autores principales: | Li, Yuntong, Fan, Teresa W.M., Lane, Andrew N., Kang, Woo-Young, Arnold, Susanne M., Stromberg, Arnold J., Wang, Chi, Chen, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798423/ https://www.ncbi.nlm.nih.gov/pubmed/31623550 http://dx.doi.org/10.1186/s12859-019-3067-z |
Ejemplares similares
-
Immunity to Sda1 Protects against Infection by Sda1(+) and Sda1(−) Serotypes of Group A Streptococcus
por: Bi, Shuai, et al.
Publicado: (2022) -
Instrumental variable estimation in semi‐parametric additive hazards models
por: Brueckner, Matthias, et al.
Publicado: (2018) -
Scale of Death Anxiety (SDA): Development and Validation
por: Cai, Wei, et al.
Publicado: (2017) -
A probabilistic method for leveraging functional annotations to enhance estimation of the temporal order of pathway mutations during carcinogenesis
por: Wang, Menghan, et al.
Publicado: (2019) -
Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach
por: von Stosch, Moritz, et al.
Publicado: (2010)