Cargando…
Cohort selection for clinical trials using deep learning models
OBJECTIVE: The goal of the 2018 n2c2 shared task on cohort selection for clinical trials (track 1) is to identify which patients meet the selection criteria for clinical trials. Cohort selection is a particularly demanding task to which natural language processing and deep learning can make a valuab...
Autores principales: | Segura-Bedmar, Isabel, Raez, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798560/ https://www.ncbi.nlm.nih.gov/pubmed/31532478 http://dx.doi.org/10.1093/jamia/ocz139 |
Ejemplares similares
-
Exploring deep learning methods for recognizing rare diseases and their clinical manifestations from texts
por: Segura-Bedmar, Isabel, et al.
Publicado: (2022) -
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2022) -
Learning relevance models for patient cohort retrieval
por: Goodwin, Travis R, et al.
Publicado: (2018) -
Quantifying representativeness in randomized clinical trials using machine learning fairness metrics
por: Qi, Miao, et al.
Publicado: (2021) -
Deep learning models in detection of dietary supplement adverse event signals from Twitter
por: Wang, Yefeng, et al.
Publicado: (2021)