Cargando…
Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification
OBJECTIVE: Automated clinical phenotyping is challenging because word-based features quickly turn it into a high-dimensional problem, in which the small, privacy-restricted, training datasets might lead to overfitting. Pretrained embeddings might solve this issue by reusing input representation sche...
Autores principales: | Oleynik, Michel, Kugic, Amila, Kasáč, Zdenko, Kreuzthaler, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798565/ https://www.ncbi.nlm.nih.gov/pubmed/31512729 http://dx.doi.org/10.1093/jamia/ocz149 |
Ejemplares similares
-
Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task
por: Sarker, Abeed, et al.
Publicado: (2018) -
ShallowHRD: detection of homologous recombination deficiency from shallow whole genome sequencing
por: Eeckhoutte, Alexandre, et al.
Publicado: (2020) -
U-Compare: share and compare text mining tools with UIMA
por: Kano, Yoshinobu, et al.
Publicado: (2009) -
Functional evaluation of out-of-the-box text-mining tools for data-mining tasks
por: Jung, Kenneth, et al.
Publicado: (2015) -
Red Flag/Blue Flag visualization of a common CNN for text classification
por: Del Gaizo, John, et al.
Publicado: (2023)