Cargando…
Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology
Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individu...
Autores principales: | Zormpas-Petridis, Konstantinos, Failmezger, Henrik, Raza, Shan E Ahmed, Roxanis, Ioannis, Jamin, Yann, Yuan, Yinyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798642/ https://www.ncbi.nlm.nih.gov/pubmed/31681583 http://dx.doi.org/10.3389/fonc.2019.01045 |
Ejemplares similares
-
SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images
por: Zormpas-Petridis, Konstantinos, et al.
Publicado: (2021) -
Context-Aware Superpixel and Bilateral Entropy—Image Coherence Induces Less Entropy
por: Liu, Feihong, et al.
Publicado: (2019) -
Multilevel Multiobjective Particle Swarm Optimization Guided Superpixel Algorithm for Histopathology Image Detection and Segmentation
por: Kanadath, Anusree, et al.
Publicado: (2023) -
Efficient Color Quantization Using Superpixels
por: Frackiewicz, Mariusz, et al.
Publicado: (2022) -
Automatic glioma segmentation based on adaptive superpixel
por: Wu, Yaping, et al.
Publicado: (2019)