Cargando…

Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations

In this paper, we propose a parallel cellular automaton tumor growth model that includes load balancing of cells distribution among computational threads with the introduction of adjusting parameters. The obtained results show a fair reduction in execution time and improved speedup compared with the...

Descripción completa

Detalles Bibliográficos
Autores principales: Salguero, Alberto G., Tomeu-Hardasmal, Antonio J., Capel, Manuel I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798858/
https://www.ncbi.nlm.nih.gov/pubmed/30763265
http://dx.doi.org/10.1515/jib-2018-0066
_version_ 1783460150234841088
author Salguero, Alberto G.
Tomeu-Hardasmal, Antonio J.
Capel, Manuel I.
author_facet Salguero, Alberto G.
Tomeu-Hardasmal, Antonio J.
Capel, Manuel I.
author_sort Salguero, Alberto G.
collection PubMed
description In this paper, we propose a parallel cellular automaton tumor growth model that includes load balancing of cells distribution among computational threads with the introduction of adjusting parameters. The obtained results show a fair reduction in execution time and improved speedup compared with the sequential tumor growth simulation program currently referenced in tumoral biology. The dynamic data structures of the model can be extended to address additional tumor growth characteristics such as angiogenesis and nutrient intake dependencies.
format Online
Article
Text
id pubmed-6798858
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher De Gruyter
record_format MEDLINE/PubMed
spelling pubmed-67988582019-10-28 Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations Salguero, Alberto G. Tomeu-Hardasmal, Antonio J. Capel, Manuel I. J Integr Bioinform Workshops In this paper, we propose a parallel cellular automaton tumor growth model that includes load balancing of cells distribution among computational threads with the introduction of adjusting parameters. The obtained results show a fair reduction in execution time and improved speedup compared with the sequential tumor growth simulation program currently referenced in tumoral biology. The dynamic data structures of the model can be extended to address additional tumor growth characteristics such as angiogenesis and nutrient intake dependencies. De Gruyter 2019-02-14 /pmc/articles/PMC6798858/ /pubmed/30763265 http://dx.doi.org/10.1515/jib-2018-0066 Text en ©2019, Alberto G. Salguero et al., published by Walter de Gruyter GmbH, Berlin/Boston http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 Public License.
spellingShingle Workshops
Salguero, Alberto G.
Tomeu-Hardasmal, Antonio J.
Capel, Manuel I.
Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations
title Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations
title_full Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations
title_fullStr Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations
title_full_unstemmed Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations
title_short Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations
title_sort dynamic load balancing strategy for parallel tumor growth simulations
topic Workshops
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798858/
https://www.ncbi.nlm.nih.gov/pubmed/30763265
http://dx.doi.org/10.1515/jib-2018-0066
work_keys_str_mv AT salgueroalbertog dynamicloadbalancingstrategyforparalleltumorgrowthsimulations
AT tomeuhardasmalantonioj dynamicloadbalancingstrategyforparalleltumorgrowthsimulations
AT capelmanueli dynamicloadbalancingstrategyforparalleltumorgrowthsimulations