Cargando…
Deep Convolutional Neural Networks for the Prediction of Molecular Properties: Challenges and Opportunities Connected to the Data
We present a flexible deep convolutional neural network method for the analysis of arbitrary sized graph structures representing molecules. This method, which makes use of the Lipinski RDKit module, an open-source cheminformatics software, enables the incorporation of any global molecular (such as m...
Autores principales: | Ståhl, Niclas, Falkman, Göran, Karlsson, Alexander, Mathiason, Gunnar, Boström, Jonas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798861/ https://www.ncbi.nlm.nih.gov/pubmed/30517077 http://dx.doi.org/10.1515/jib-2018-0065 |
Ejemplares similares
-
Evaluation of Uncertainty Quantification in Deep Learning
por: Ståhl, Niclas, et al.
Publicado: (2020) -
Enhanced identification of membrane transport proteins: a hybrid approach combining ProtBERT-BFD and convolutional neural networks
por: Ghazikhani, Hamed, et al.
Publicado: (2023) -
Integrative analysis of chemical properties and functions of drugs for adverse drug reaction prediction based on multi-label deep neural network
por: Das, Pranab, et al.
Publicado: (2022) -
Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities
por: Lakhani, Paras
Publicado: (2017) -
Deep convolutional neural networks for mammography: advances, challenges and applications
por: Abdelhafiz, Dina, et al.
Publicado: (2019)