Cargando…

Influence of phylogenetic structure and climate gradients on geographical variation in the morphology of Mexican flycatcher forests assemblages (Aves: Tyrannidae)

Morphological variation is strongly related to variation in the ecological characteristics and evolutionary history of each taxon. To explore how geographical variation in morphology is related to different climatic gradients and phylogenetic structure, we analyzed the variation of morphological tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Cortés-Ramírez, Gala, Ríos-Muñoz, César A., Navarro-Sigüenza, Adolfo G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798907/
https://www.ncbi.nlm.nih.gov/pubmed/31637112
http://dx.doi.org/10.7717/peerj.6754
Descripción
Sumario:Morphological variation is strongly related to variation in the ecological characteristics and evolutionary history of each taxon. To explore how geographical variation in morphology is related to different climatic gradients and phylogenetic structure, we analyzed the variation of morphological traits (body size, bill, and wing) of 64 species of tyrant flycatchers (Tyrannidae) distributed in Mexico. We measured these morphological traits in specimens from biological collections and related them to the climatic and topographic data of each collection locality. We performed the analyses separately at two levels: (1) the regional level and (2) the assemblage level, which was split into (assemblage I) lowland forests and (assemblage II) highland forests and other vegetation types. We also calculated the phylogenetic structure of flycatchers of each locality in order to explore the influence of climatic variables and the phylogenetic structure on the morphological variation of tyrant flycatchers, by means of linear mixed-effects models. We mapped the spatial variation of the relationship between morphological traits and environmental gradients, taking into account the phylogenetic structure. Important climatic variables explaining the morphological variation were those of temperature ranges (seasonality) and the results suggest that the phylogenetic clustering increases towards the highlands of Sierra Madre Oriental and Sierra Madre del Sur, and the lowlands of Balsas Depression. For the regional level, the spatial distribution of body size showed a pattern coincident with Bergmann’s rule, with increasing in size from south to north. In the tropical lowland forests assemblage, body size tend to increase in seasonally dry forests (western Mexico) and decrease in the humid ones (eastern Mexico). In the assemblage of highland forests and other types of vegetation, morphological trait values increased northeast to southwest. Phylogenetic structure helped to explain the variation of morphology at the assemblage level but not at the regional level. The patterns of trait variation in the lowland and highland assemblages suggest that parts of morphological variation are explained both by the climatic gradients and by the lineage relatedness of communities. Overall, our results suggest that morphological variation is best explained by a varied set of variables, and that regression models representing this variation, as well as integrating phylogenetic patterns at different community levels, provide a new understanding of the mechanisms underlying the links among biodiversity, its geographical setting, and environmental change.