Cargando…

2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models

OBJECTIVES/SPECIFIC AIMS: The goal of this study is to evaluate a potential strategy to overcome tamoxifen (tam) resistance by using tam in combination with high-intensity focused ultrasound (HIFU). Tam is the most commonly used anti-cancer therapeutic agent in estrogen receptor positive (ER+) breas...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabol, Rachel, Murad, Hakm, Burow, Matthew, Khismatullin, Damir, Bunnell, Bruce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799027/
http://dx.doi.org/10.1017/cts.2018.80
_version_ 1783460192362430464
author Sabol, Rachel
Murad, Hakm
Burow, Matthew
Khismatullin, Damir
Bunnell, Bruce
author_facet Sabol, Rachel
Murad, Hakm
Burow, Matthew
Khismatullin, Damir
Bunnell, Bruce
author_sort Sabol, Rachel
collection PubMed
description OBJECTIVES/SPECIFIC AIMS: The goal of this study is to evaluate a potential strategy to overcome tamoxifen (tam) resistance by using tam in combination with high-intensity focused ultrasound (HIFU). Tam is the most commonly used anti-cancer therapeutic agent in estrogen receptor positive (ER+) breast cancer (BC) which accounts for ~70% of BC cases. Tam treatment decreases a woman’s risk of recurrence by 50%; however, BC that is initially responsive to tam often develops resistance. METHODS/STUDY POPULATION: HIFU deposits acoustic energy locally to a cancerous region, which induces strong vibrations of molecules inside and outside of the cells. The resulting absorption causes rapid heating and mechanical disruption. This clinically relevant, noninvasive, and nonionizing physical force modality, has been shown to synergistically enhance chemical anticancer therapies. RESULTS/ANTICIPATED RESULTS: In this study we found that treatment of MCF7 cells with HIFU and tam has additive antiproliferative effects and mediates increased cell death. Additionally, we used tam resistant (TR) MCF7 cells that had been exposed to low-dose tam over time until they acquired resistance. When MCF7 TR are treated with tam there is no change in viability; however, treatment with HIFU in combination with tam decreased viability of both MCF7 and MCF7 TR to 19% and the viability of the cell lines was indistinguishable. We next evaluated the effect on MCF7 Y537S mutant ESR1, where ER is mutated to be constitutively active. Treatment of MCF7 Y537S had no significant decrease in viability of combination therapy compared with viability after HIFU alone. Analysis of ERalpha gene expression showed that HIFU treatment increased ERalpha expression in MCF7 TR cells, thus resensitizing these cells to tam and allowing these therapies to work synergistically. Our team developed a system to evaluate the potential of this combination of therapies in a patient-derived xenografts (PDX) model. PDX have emerged as a novel translational tool for cancer research with the potential to more accurately recapitulate the molecular and behavioral aspects of cancer. The WHIM20 PDX is a tamoxifen resistant tumor where the patient developed the Y537S mutation in ESR1. Ex vivo experiments on PDX tumor pieces demonstrated that combination therapy of HIFU and tam work synergistically to increase cell death of these tumors. Further, cryogenic-scanning electron microscopy was utilized to directly demonstrate the physical disruption to both cellular and tumor microenvironment post exposure to combination treatment. DISCUSSION/SIGNIFICANCE OF IMPACT: These studies present a novel translational strategy to overcome tamoxifen resistance in ER+BC.
format Online
Article
Text
id pubmed-6799027
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-67990272019-10-28 2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models Sabol, Rachel Murad, Hakm Burow, Matthew Khismatullin, Damir Bunnell, Bruce J Clin Transl Sci Basic/Translational Science/Team Science OBJECTIVES/SPECIFIC AIMS: The goal of this study is to evaluate a potential strategy to overcome tamoxifen (tam) resistance by using tam in combination with high-intensity focused ultrasound (HIFU). Tam is the most commonly used anti-cancer therapeutic agent in estrogen receptor positive (ER+) breast cancer (BC) which accounts for ~70% of BC cases. Tam treatment decreases a woman’s risk of recurrence by 50%; however, BC that is initially responsive to tam often develops resistance. METHODS/STUDY POPULATION: HIFU deposits acoustic energy locally to a cancerous region, which induces strong vibrations of molecules inside and outside of the cells. The resulting absorption causes rapid heating and mechanical disruption. This clinically relevant, noninvasive, and nonionizing physical force modality, has been shown to synergistically enhance chemical anticancer therapies. RESULTS/ANTICIPATED RESULTS: In this study we found that treatment of MCF7 cells with HIFU and tam has additive antiproliferative effects and mediates increased cell death. Additionally, we used tam resistant (TR) MCF7 cells that had been exposed to low-dose tam over time until they acquired resistance. When MCF7 TR are treated with tam there is no change in viability; however, treatment with HIFU in combination with tam decreased viability of both MCF7 and MCF7 TR to 19% and the viability of the cell lines was indistinguishable. We next evaluated the effect on MCF7 Y537S mutant ESR1, where ER is mutated to be constitutively active. Treatment of MCF7 Y537S had no significant decrease in viability of combination therapy compared with viability after HIFU alone. Analysis of ERalpha gene expression showed that HIFU treatment increased ERalpha expression in MCF7 TR cells, thus resensitizing these cells to tam and allowing these therapies to work synergistically. Our team developed a system to evaluate the potential of this combination of therapies in a patient-derived xenografts (PDX) model. PDX have emerged as a novel translational tool for cancer research with the potential to more accurately recapitulate the molecular and behavioral aspects of cancer. The WHIM20 PDX is a tamoxifen resistant tumor where the patient developed the Y537S mutation in ESR1. Ex vivo experiments on PDX tumor pieces demonstrated that combination therapy of HIFU and tam work synergistically to increase cell death of these tumors. Further, cryogenic-scanning electron microscopy was utilized to directly demonstrate the physical disruption to both cellular and tumor microenvironment post exposure to combination treatment. DISCUSSION/SIGNIFICANCE OF IMPACT: These studies present a novel translational strategy to overcome tamoxifen resistance in ER+BC. Cambridge University Press 2018-11-21 /pmc/articles/PMC6799027/ http://dx.doi.org/10.1017/cts.2018.80 Text en © The Association for Clinical and Translational Science 2018 http://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Basic/Translational Science/Team Science
Sabol, Rachel
Murad, Hakm
Burow, Matthew
Khismatullin, Damir
Bunnell, Bruce
2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models
title 2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models
title_full 2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models
title_fullStr 2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models
title_full_unstemmed 2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models
title_short 2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models
title_sort 2070 high-intensity focused ultrasound (hifu) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models
topic Basic/Translational Science/Team Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799027/
http://dx.doi.org/10.1017/cts.2018.80
work_keys_str_mv AT sabolrachel 2070highintensityfocusedultrasoundhifucanbeusedsynergisticallywithtamoxifentoovercomeresistanceinpreclinicalandpatientderivedxenograftmodels
AT muradhakm 2070highintensityfocusedultrasoundhifucanbeusedsynergisticallywithtamoxifentoovercomeresistanceinpreclinicalandpatientderivedxenograftmodels
AT burowmatthew 2070highintensityfocusedultrasoundhifucanbeusedsynergisticallywithtamoxifentoovercomeresistanceinpreclinicalandpatientderivedxenograftmodels
AT khismatullindamir 2070highintensityfocusedultrasoundhifucanbeusedsynergisticallywithtamoxifentoovercomeresistanceinpreclinicalandpatientderivedxenograftmodels
AT bunnellbruce 2070highintensityfocusedultrasoundhifucanbeusedsynergisticallywithtamoxifentoovercomeresistanceinpreclinicalandpatientderivedxenograftmodels