Cargando…
2182: Developing a corpus for natural language processing to identify bleeding complications among intensive care unit patients
OBJECTIVES/SPECIFIC AIMS: An accurate method to identify bleeding in large populations does not exist. Our goal was to explore bleeding representation in clinical text in order to develop a natural language processing (NLP) approach to automatically identify bleeding events from clinical notes. METH...
Autores principales: | Shah, Rashmee, Steinberg, Benjamin, Bucher, Brian, Chapman, Alec, Lloyd-Jones, Donald, Rondina, Matthew, Chapman, Wendy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799302/ http://dx.doi.org/10.1017/cts.2017.60 |
Ejemplares similares
-
2378: A scientometric analysis of CTSA collaboration and impact
por: Holmes, Kristi, et al.
Publicado: (2018) -
‘Single-subject studies’-derived analyses unveil altered biomechanisms between very small cohorts: implications for rare diseases
por: Aberasturi, Dillon, et al.
Publicado: (2021) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021) -
TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings
por: Peres da Silva, Rafael, et al.
Publicado: (2021)