Cargando…

3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes

OBJECTIVES/SPECIFIC AIMS: We previously demonstrated that products released by cultured B cells from patients with Multiple Sclerosis (MS) are cytotoxic to neurons and oligodendrocytes, while minimal toxicity was observed in response to B cell secretory products from age- and sex-matched normal cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Zuroff, Leah, Touil, Hanane, Romer, Micah, Nedelkoska, Liljana, Benjamins, Joyce A., Lisak, Robert P., Grinspan, Judith B., Bar-Or, Amit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799518/
http://dx.doi.org/10.1017/cts.2019.265
_version_ 1783460302644314112
author Zuroff, Leah
Touil, Hanane
Romer, Micah
Nedelkoska, Liljana
Benjamins, Joyce A.
Lisak, Robert P.
Grinspan, Judith B.
Bar-Or, Amit
author_facet Zuroff, Leah
Touil, Hanane
Romer, Micah
Nedelkoska, Liljana
Benjamins, Joyce A.
Lisak, Robert P.
Grinspan, Judith B.
Bar-Or, Amit
author_sort Zuroff, Leah
collection PubMed
description OBJECTIVES/SPECIFIC AIMS: We previously demonstrated that products released by cultured B cells from patients with Multiple Sclerosis (MS) are cytotoxic to neurons and oligodendrocytes, while minimal toxicity was observed in response to B cell secretory products from age- and sex-matched normal controls. The goal of this proposal is to identify the range of brain cells susceptible to MS B cell-mediated cytotoxicity, to define the cytotoxic factor(s) released by MS B cells, and to determine whether particular subset(s) of MS B cells harbor the greatest pathogenic potential. METHODS/STUDY POPULATION: The toxicity of B cell products will be demonstrated by incubating primary rat cultures of neurons, oligodendrocytes, and oligodendrocyte progenitor cells (OPCs) with B cell supernatants. B cells will be isolated from the peripheral circulation of untreated relapse-remitting MS (RRMS) patients and age- and sex-matched normal controls. The identification of specific toxic factor(s) in MS B cell supernatants will be achieved through a combination of exosome-depletion/enrichment of conditioned media, proteomics, next generation sequencing, and lipidomics. Determining pathogenic B cell subsets will be achieved by cell sorting into memory and naïve B cell subsets prior to collection of supernatants. RESULTS/ANTICIPATED RESULTS: We hypothesize that the toxicity of MS B cell products is mediated, at least in part, by extracellular vesicles, such as exosomes. We expect depletion of these exosomes from the B cell conditioned media or inhibition of their biogenesis will mitigate the observed toxicity. Furthermore, differences in B cell-derived exosomal content, such as proteins, (mi)RNAs, or lipids, likely explain the differences in observed toxicity. Lastly, we hypothesize that memory B cells, which are enriched in the CNS of MS patients and demonstrate a more pro-inflammatory profile than naïve B cells, are responsible for the toxicity observed in supernatants of total B cells. DISCUSSION/SIGNIFICANCE OF IMPACT: MS is the most prevalent chronic inflammatory disease of the CNS, affecting more than 2 million people worldwide. Although over a dozen disease-modifying therapies are approved for the treatment of RRMS, none are meaningfully effective at limiting disease progression. This proposal will provide new insight into immune-CNS interactions in progressive MS and provide much-needed novel targets for therapeutic intervention, either via blocking identified toxic molecule(s) or by selectively depleting pathogenic B cell subsets.
format Online
Article
Text
id pubmed-6799518
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-67995182019-10-28 3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes Zuroff, Leah Touil, Hanane Romer, Micah Nedelkoska, Liljana Benjamins, Joyce A. Lisak, Robert P. Grinspan, Judith B. Bar-Or, Amit J Clin Transl Sci Mechanistic Basic to Clinical OBJECTIVES/SPECIFIC AIMS: We previously demonstrated that products released by cultured B cells from patients with Multiple Sclerosis (MS) are cytotoxic to neurons and oligodendrocytes, while minimal toxicity was observed in response to B cell secretory products from age- and sex-matched normal controls. The goal of this proposal is to identify the range of brain cells susceptible to MS B cell-mediated cytotoxicity, to define the cytotoxic factor(s) released by MS B cells, and to determine whether particular subset(s) of MS B cells harbor the greatest pathogenic potential. METHODS/STUDY POPULATION: The toxicity of B cell products will be demonstrated by incubating primary rat cultures of neurons, oligodendrocytes, and oligodendrocyte progenitor cells (OPCs) with B cell supernatants. B cells will be isolated from the peripheral circulation of untreated relapse-remitting MS (RRMS) patients and age- and sex-matched normal controls. The identification of specific toxic factor(s) in MS B cell supernatants will be achieved through a combination of exosome-depletion/enrichment of conditioned media, proteomics, next generation sequencing, and lipidomics. Determining pathogenic B cell subsets will be achieved by cell sorting into memory and naïve B cell subsets prior to collection of supernatants. RESULTS/ANTICIPATED RESULTS: We hypothesize that the toxicity of MS B cell products is mediated, at least in part, by extracellular vesicles, such as exosomes. We expect depletion of these exosomes from the B cell conditioned media or inhibition of their biogenesis will mitigate the observed toxicity. Furthermore, differences in B cell-derived exosomal content, such as proteins, (mi)RNAs, or lipids, likely explain the differences in observed toxicity. Lastly, we hypothesize that memory B cells, which are enriched in the CNS of MS patients and demonstrate a more pro-inflammatory profile than naïve B cells, are responsible for the toxicity observed in supernatants of total B cells. DISCUSSION/SIGNIFICANCE OF IMPACT: MS is the most prevalent chronic inflammatory disease of the CNS, affecting more than 2 million people worldwide. Although over a dozen disease-modifying therapies are approved for the treatment of RRMS, none are meaningfully effective at limiting disease progression. This proposal will provide new insight into immune-CNS interactions in progressive MS and provide much-needed novel targets for therapeutic intervention, either via blocking identified toxic molecule(s) or by selectively depleting pathogenic B cell subsets. Cambridge University Press 2019-03-27 /pmc/articles/PMC6799518/ http://dx.doi.org/10.1017/cts.2019.265 Text en © The Association for Clinical and Translational Science 2019 http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
spellingShingle Mechanistic Basic to Clinical
Zuroff, Leah
Touil, Hanane
Romer, Micah
Nedelkoska, Liljana
Benjamins, Joyce A.
Lisak, Robert P.
Grinspan, Judith B.
Bar-Or, Amit
3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes
title 3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes
title_full 3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes
title_fullStr 3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes
title_full_unstemmed 3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes
title_short 3285 Toxicity of Released B Cell Products in Multiple Sclerosis: Effects on Neurons and Oligodendrocytes
title_sort 3285 toxicity of released b cell products in multiple sclerosis: effects on neurons and oligodendrocytes
topic Mechanistic Basic to Clinical
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799518/
http://dx.doi.org/10.1017/cts.2019.265
work_keys_str_mv AT zuroffleah 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes
AT touilhanane 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes
AT romermicah 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes
AT nedelkoskaliljana 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes
AT benjaminsjoycea 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes
AT lisakrobertp 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes
AT grinspanjudithb 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes
AT baroramit 3285toxicityofreleasedbcellproductsinmultiplesclerosiseffectsonneuronsandoligodendrocytes